簡易檢索 / 詳目顯示

研究生: 卓瓊玉
Chiung-yu Cho
論文名稱: 外加胺基酸進行基因重組大腸桿菌培養所得藍藻蛋白特性之探討
Supplementation of amino acids for the production of cyanophycin by recombinant Escherichia coli
指導教授: 曾文祺
Wen-Chi Tseng
口試委員: 方翠筠
Tsuei-Yun Fang
陳秀美
Hsiu-Mei Chen
鄭如忠
Ru-Jung Jeng
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2011
畢業學年度: 99
語文別: 中文
論文頁數: 106
中文關鍵詞: 胺基酸藍藻蛋白大腸桿菌
外文關鍵詞: amino acid, cyanophycin, Escherichia coli
相關次數: 點閱:266下載:9
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   藍藻蛋白為存在於大部分藍綠藻菌中非核醣體合成的聚合物,由1887年Borzi在顯微鏡底下觀察後發現;藍藻蛋白的合成需有藍藻蛋白合成酶才能進行聚合,由等比例的Asp與Arg所組成,屬於生物體自身合成的聚胺基酸,可作為生物體碳源及氮源。
      本研究以Synechocystis sp. PCC 6803 cphA 之E. coli BL21- CodonPlus(DE3)-RIL進行探討,質體系統為pET系統,在經過IPTG誘導以及外加不同濃度的Arg、Lys、Glu以及Asp之後,經由純化步驟而得到藍藻蛋白。進一步比較藍藻蛋白產率、分子量,且利用高效液相層析儀分析胺基酸組成。亦將藍藻蛋白進行MALDI-TOF MS、XRD、熱重分析、傅立葉轉換紅外光譜分析。
      實驗結果顯示於培養基中外加Glu和Asp培養菌體並不會對於藍藻蛋白產率及胺基酸組成有所影響。培養基中外加Arg可生產較多的非水溶性藍藻蛋白,並降低了水溶性藍藻蛋白的生成,且於蛋白質電泳上觀察到藍藻蛋白分子量降低,非水溶性部分為17.4 ~ 34.8 kDa,水溶性部分為8.3 ~ 20.3 kDa,且以胺基酸分析水溶性藍藻蛋白Arg比例為36.46 ± 0.49 %,較控制組Arg比例22.38 ± 0.63 % 高,以MALDI-TOF MS分析其水溶性藍藻蛋白平均分子量18.84 kDa較控制組的平均分子量20.19 kDa來的低,XRD分析結果指出外加Arg培養會使水溶性藍藻蛋白結晶度降低;外加Lys培養可生產較多的水溶性藍藻蛋白,並降低了非水溶性藍藻蛋白的生成,對於藍藻蛋白的分子量以及胺基酸組成並沒有太大的改變。最後以熱重分析與傅立葉轉換紅外光譜分析藍藻蛋白,發現到外加胺基酸培養與否和藍藻蛋白裂解溫度及官能基吸收值皆沒有太大關聯。
      總結以上,外加Arg進行培養對於藍藻蛋白的分子量、非水溶性藍藻蛋白比例、胺基酸組成皆有影響,外加Lys有助於提高水溶性藍藻蛋白的產率。


    Cyanophycin granule polypeptide (CGP) is a non-ribosomal protein found in most groups of cyanobacteria. It was discovered in 1887 by Borzi during microscopic studies of cyanobacteria. Most cyanobacteria harbor a functional cyanophycin synthetase gene (cphA) and synthesize CGP. The branched polymer consists of an equimolar amount of arginine and aspartic acid.
    In this study, we used Synechocystis sp. PCC 6803 cphA in E. coli BL21-CodonPlus(DE3)-RIL to produce CGP. The pET expression system was employed to produce CGP. After induction by 0.01 mM IPTG and different amounts of supplemented amino acids to the culture medium, the yields of purified CGP were compared. The molecular weights were analyzed by SDS-PAGE and MALDI-TOF MS. The amino acid compositions were assayed by HPLC. The physical properties of CGP were further analyzed by XRD, TGA, and FTIR.
    The results showed that the medium supplemented with either glutamate or aspartic acid had no effect on the amino acid compositions of CGP. The bacteria grown in the presence of arginine produced a higher amount of insoluble CGP contents with a reduced yield of soluble CGP contents. The molecular weights of both insoluble (17.4-34.8 kDa) and soluble (8.3-20.3 kDa) CGP analyzed by SDS-PAGE were lower than the CGP from the non-supplemented culture condition. The purified soluble CGP from the supplemented arginine culture showed 36.46±0.49 mole% arginine, higher than the purified soluble CGP (22.38±0.63 mole% arginine) from the unsupplemented culture condition. The molecular weight of arginine-rich soluble CGP analyzed by MALDI-TOF MS is 18.84 kDa, lower than the typical soluble CGP (20.19 kDa). In addition, the medium supplemented with arginine might decrease the crystallinity of soluble CGP. The medium supplemented with lysine showed a higher soluble CGP content with a decreased insoluble CGP content, and had no effect on the amino acid compositions of CGP. The TGA and FTIR analysis showed that the CGP exhibited similar properties irrespective of the supplemented amino acids.
    In conclusion, the bacteria grown in the presence of supplemented arginine may affect the molecular weight, yield, and amino acid compositions of CGP. The supplementation of the medium with lysine could increase the soluble CGP yield.

    摘要 I Abstract III 致謝 V 目錄 VII 表目錄 X 圖目錄 XI 第一章 緒論 1 1.1 前言 1 1.2 研究動機 2 第二章 文獻回顧 3 2.1 pET表現系統 3 2.2 BL21-CodonPlus 5 2.3 藍藻蛋白 8 2.3.1 藍藻蛋白特性 9 2.3.2 藍藻蛋白的合成 9 2.3.3 藍藻蛋白純化 11 2.3.4 藍藻蛋白產率 11 2.3.5 基因改質後的藍藻蛋白 12 2.3.6 藍藻蛋白的降解 16 2.3.7 未來在生物上應用 17 2.4 高效能液相層析 20 2.4.1 分配層析法 21 2.4.2 以苯基異硫氰酸酯(phenyl isothiocyanate)進行胺基酸分析 22 第三章 實驗 23 3.1 實驗藥品 23 3.2 實驗器材 25 3.3 藥品製備 27 3.4 實驗步驟 33 3.4.1 微生物培養 33 3.4.1.1 培養大腸桿菌於LB瓊脂板 33 3.4.1.2 培養大腸桿菌於 2毫升 LB 培養基 33 3.4.1.3 培養大腸桿菌於50毫升LB培養基 34 3.4.1.4 培養大腸桿菌於150毫升TB培養基 34 3.4.2 外加不同胺基酸進行微生物培養 35 3.4.2.1 外加Arg、Glu、Lys培養大腸桿菌 35 3.4.2.2 外加Arg、Lys、Asp培養大腸桿菌 36 3.4.3 藍藻蛋白純化 37 3.4.3.1 純化非水溶性藍藻蛋白 38 3.4.3.2 純化水溶性藍藻蛋白 39 3.4.4 蛋白質電泳(SDS-PAGE)分析藍藻蛋白 40 3.4.5 高效能液相層析分析胺基酸 41 3.4.5.1 標準胺基酸與線下面積之關係 42 3.4.5.2 分析藍藻蛋白胺基酸 42 3.4.6 以基質輔助雷射脫附游離質譜儀分析藍藻蛋白 43 3.4.7 以X-ray diffraction分析藍藻蛋白 44 3.4.8 以熱重分析儀分析藍藻蛋白 44 3.4.9 以傅立葉轉換紅外光譜儀(FTIR)分析藍藻蛋白 45 第四章 結果與討論 46 4.1 高效能液相層析中標準胺基酸與線下面積之關係 46 4.2 外加Arg、Glu、Lys培養大腸桿菌 47 4.3 外加Arg、Lys、Asp培養大腸桿菌 48 4.3.1 純化後產率比較 49 4.3.2 高效能液相層析分析藍藻蛋白胺基酸組成 50 4.3.3 以蛋白質電泳分析藍藻蛋白分子量 51 4.4 以基質輔助雷射脫附游離質譜儀分析藍藻蛋白 52 4.5 以X-ray diffraction分析藍藻蛋白 53 4.6 以熱重分析儀分析藍藻蛋白 54 4.7 以傅立葉轉換紅外光譜儀分析藍藻蛋白 55 第五章 結論 56 參考文獻 58

    1. Sallam A, Steinbuchel A: Dipeptides in nutrition and therapy: cyanophycin-derived dipeptides as natural alternatives and their biotechnological production. Applied Microbiology and Biotechnology 2010, 87:815-828.
    2. Adibi SA, Morse EL: Intestinal transport of dipeptides in man: relative importance of hydrolysis and intact absorption. The Journal of Clinical Investigation 1971, 50:2266-2275.
    3. Studier FW, Moffatt BA: Use of bacteriophage T7 RNA polymerase to direct selective high-level expression of cloned genes. Journal of Molecular Biology 1986, 189:113-130.
    4. Blaber M: Molecular Biology and Biotechnology: Prokaryotic Expression Vectors. Department of Chemistry Florida State University 1998.
    5. Novagen: pET System Tutorial. 2002-2003:88-92.
    6. Studier FW, Rosenberg AH, Dunn JJ, Dubendorff JW: Use of T7 RNA polymerase to direct expression of cloned genes. Methods in enzymology 1990, 185:60-89.
    7. Kane JF: Effects of rare codon clusters on high-level expression of heterologous proteins in Escherichia coli. Current Opinion in Biotechnology 1995, 6:494-500.
    8. Robinson M, Lilley R, Little S, Emtage JS, Yarranton G, Stephens P, Millican A, Eaton M, Humphreys G: Codon usage can affect efficiency of translation of genes in Escherichia coli. Nucleic Acids Research 1984, 12:6663-6671.
    9. Carsten-Peter Carstens JB, Ronda Allen, Anna Waesche: BL21-CodonPlus™ Cells Correct Expression Problems Caused by Codon Bias. Stratagene, 14:50-52.
    10. Oppermann-Sanio FB, Steinbuchel A: Occurrence, functions and biosynthesis of polyamides in microorganisms and biotechnological production. Naturwissenschaften 2002, 89:11-22.
    11. Simon RD: Cyanophycin Granules from the Blue-Green Alga Anabaena cylindrica: A Reserve Material Consisting of Copolymers of Aspartic Acid and Arginine. Proceedings of the National Academy of Sciences of the USA 1971, 68:265-267.
    12. Simon RD, Weathers P: Determination of the structure of the novel polypeptide containing aspartic acid and arginine which is found in Cyanobacteria. Biochimica et Biophysica Acta 1976, 420:165-176.
    13. Mooibroek H, Oosterhuis N, Giuseppin M, Toonen M, Franssen H, Scott E, Sanders J, Steinbuchel A: Assessment of technological options and economical feasibility for cyanophycin biopolymer and high-value amino acid production. Applied Microbiology and Biotechnology 2007, 77:257-267.
    14. Simon RD: Measurement of the cyanophycin granule polypeptide contained in the blue-green alga Anabaena cylindrica. Journal of Bacteriology 1973, 114:1213-1216.
    15. Mackerras AH, Chazal NMd, Smith GD: Transient accumulations of cyanophycin in Anabaena cylindrica and Synechocystis 6308. Journal of General Microbiology 1990, 136:2057-2065.
    16. Ziegler K, Deutzmann R, Lockau W: Cyanophycin synthetase-like enzymes of non-cyanobacterial eubacteria: characterization of the polymer produced by a recombinant synthetase of Desulfitobacterium hafniense. Zeitschrift für Naturforschung C 2002, 57:522-529.
    17. Simon RD: The biosynthesis of multi-L-arginyl-poly(L-aspartic acid) in the filamentous cyanobacterium Anabaena cylindrica. Biochimica et Biophysica Acta 1976, 422:407-418.
    18. Ziegler K, Diener A, Herpin C, Richter R, Deutzmann R, Lockau W: Molecular characterization of cyanophycin synthetase, the enzyme catalyzing the biosynthesis of the cyanobacterial reserve material multi-L-arginyl-poly-L-aspartate (cyanophycin). European Journal of Biochemistry 1998, 254:154-159.
    19. Hai T, Oppermann-Sanio FB, Steinbuchel A: Purification and characterization of cyanophycin and cyanophycin synthetase from the thermophilic Synechococcus sp. MA19. FEMS Microbiology Letters 1999, 181:229-236.
    20. Aboulmagd E, Oppermann-Sanio FB, Steinbuchel A: Molecular characterization of the cyanophycin synthetase from Synechocystis sp. strain PCC6308. Archives of Microbiology 2000, 174:297-306.
    21. Berg H, Ziegler K, Piotukh K, Baier K, Lockau W, Volkmer-Engert R: Biosynthesis of the cyanobacterial reserve polymer multi-L-arginyl-poly-L-aspartic acid (cyanophycin): mechanism of the cyanophycin synthetase reaction studied with synthetic primers. European Journal of Biochemistry 2000, 267:5561-5570.
    22. Voss I, Diniz SC, Aboulmagd E, Steinbuchel A: Identification of the Anabaena sp. strain PCC7120 cyanophycin synthetase as suitable enzyme for production of cyanophycin in gram-negative bacteria like Pseudomonas putida and Ralstonia eutropha. Biomacromolecules 2004, 5:1588-1595.
    23. Aboulmagd E, Voss I, Oppermann-Sanio FB, Steinbuchel A: Heterologous expression of cyanophycin synthetase and cyanophycin synthesis in the industrial relevant bacteria Corynebacterium glutamicum and Ralstonia eutropha and in Pseudomonas putida. Biomacromolecules 2001, 2:1338-1342.
    24. Steinle A, Witthoff S, Krause JP, Steinbuchel A: Establishment of cyanophycin biosynthesis in Pichia pastoris and optimization by use of engineered cyanophycin synthetases. Applied and Environmental Microbiology 2010, 76:1062-1070.
    25. Steinle A, Bergander K, Steinbuchel A: Metabolic engineering of Saccharomyces cerevisiae for production of novel cyanophycins with an extended range of constituent amino acids. Applied and Environmental Microbiology 2009, 75:3437-3446.
    26. Abd-El-Karem Y, Elbers T, Reichelt R, Steinbuchel A: Heterologous expression of Anabaena sp. PCC7120 cyanophycin metabolism genes cphA1 and cphB1 in Sinorhizobium (Ensifer) meliloti 1021. Applied Microbiology and Biotechnology 2011, 89:1177-1192.
    27. Neumann K, Stephan DP, Ziegler K, Huhns M, Broer I, Lockau W, Pistorius EK: Production of cyanophycin, a suitable source for the biodegradable polymer polyaspartate, in transgenic plants. Plant Biotechnology Journal 2005, 3:249-258.
    28. Frey KM, Oppermann-Sanio FB, Schmidt H, Steinbuchel A: Technical-scale production of cyanophycin with recombinant strains of Escherichia coli. Applied and Environmental Microbiology 2002, 68:3377-3384.
    29. Simon RD: The effect of chloramphenicol on the production of cyanophycin granule polypeptide in the blue green alga Anabaena cylindrica. Archives of Microbiology 1973, 92:115-122.
    30. Elbahloul Y, Frey K, Sanders J, Steinbuchel A: Protamylasse, a residual compound of industrial starch production, provides a suitable medium for large-scale cyanophycin production. Applied and Environmental Microbiology 2005, 71:7759-7767.
    31. Solaiman DK, Garcia RA, Ashby RD, Piazza GJ, Steinbuchel A: Rendered-protein hydrolysates for microbial synthesis of cyanophycin biopolymer. New Biotechnology 2011.
    32. Kroll J, Klinter S, Steinbuchel A: A novel plasmid addiction system for large-scale production of cyanophycin in Escherichia coli using mineral salts medium. Applied Microbiology and Biotechnology 2011, 89:593-604.
    33. Wiefel L, Bröker A, Steinbüchel A: Synthesis of a citrulline-rich cyanophycin by use of Pseudomonas putida ATCC 4359. Applied Microbiology and Biotechnology 2011.
    34. Richter R, Hejazi M, Kraft R, Ziegler K, Lockau W: Cyanophycinase, a peptidase degrading the cyanobacterial reserve material multi-L-arginyl-poly-L-aspartic acid (cyanophycin): molecular cloning of the gene of Synechocystis sp. PCC 6803, expression in Escherichia coli, and biochemical characterization of the purified enzyme. European Journal of Biochemistry 1999, 263:163-169.
    35. Hejazi M, Piotukh K, Mattow J, Deutzmann R, Volkmer-Engert R, Lockau W: Isoaspartyl dipeptidase activity of plant-type asparaginases. Biochemical Journal 2002, 364:129-136.
    36. Obst M, Oppermann-Sanio FB, Luftmann H, Steinbuchel A: Isolation of cyanophycin-degrading bacteria, cloning and characterization of an extracellular cyanophycinase gene (cphE) from Pseudomonas anguilliseptica strain BI. The cphE gene from P. anguilliseptica BI encodes a cyanophycinhydrolyzing enzyme. The Journal of Biological Chemistry 2002, 277:25096-25105.
    37. Sallam A, Steinbuchel A: Cyanophycin-degrading bacteria in digestive tracts of mammals, birds and fish and consequences for possible applications of cyanophycin and its dipeptides in nutrition and therapy. Journal of Applied Microbiology 2009, 107:474-484.
    38. Schwamborn M: Chemical synthesis of polyaspartates: a biodegradable alternative to currently used polycarboxylate homo- and copolymers. Polymer Degradation and Stability 1998, 59:39-45.
    39. McLean IW, Nakane PK: Periodate-lysine-paraformaldehyde fixative. A new fixation for immunoelectron microscopy. Journal of Histochemistry & Cytochemistry 1974, 22:1077-1083.
    40. Veronese FM: Peptide and protein PEGylation: a review of problems and solutions. Biomaterials 2001, 22:405-417.
    41. Mrabet Y: High-performance liquid chromatography. Wikipedia 2009.
    42. 林敬二: 儀器分析. 美亞書版股份有限公司 2005.
    43. Bidlingmeyer BA, Cohen SA, Tarvin TL: Rapid analysis of amino acids using pre-column derivatization. Journal of Chromatography B: Biomedical Sciences and Applications 1984, 336:93-104.
    44. Catherine C. NP, and Keith W.: Amino Acid Analysis Protocols. Humana Press 2001.
    45. 蔡景翔: 培養條件對基因重組大腸桿菌生產藍藻蛋白之探討. 國立台灣科技大學 2010.

    無法下載圖示 全文公開日期 2013/07/15 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE