研究生: |
姚久琳 Chiu-Lin Yao |
---|---|
論文名稱: |
設計與製作新型高速可調式雷射 Design and Fabrication Novel Fast Tunable Laser Sources |
指導教授: |
李三良
San-Liang Lee |
口試委員: |
劉政光
none 廖顯奎 none 吳靜雄 none 林浩雄 none 賴暎杰 none 曹士林 none |
學位類別: |
博士 Doctor |
系所名稱: |
電資學院 - 電子工程系 Department of Electronic and Computer Engineering |
論文出版年: | 2006 |
畢業學年度: | 94 |
語文別: | 中文 |
論文頁數: | 106 |
中文關鍵詞: | 可調式雷射 |
外文關鍵詞: | tunable laser |
相關次數: | 點閱:244 下載:12 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文的重點在於研製兩種新型可調式雷射,包含應用於光通訊之高速波長可選雷射發訊器與應用於氣體偵測之大範圍波長可調雷射。
高速波長可選雷射發訊器使用新型態的光柵反射鏡,成功地實現並應用於高速波長切換元件中。其由DBR形式的雷射陣列與多模干涉光耦合器組成。為了涵蓋更大的可調波長範圍,光柵區以兩製作於不同波導厚度之串接式取樣光柵取代,使得最大反射頻譜出現在高階反射頻譜尖峰,藉由控制兩取樣光柵反射頻譜的間距,使得雷射陣列中各個雷射不需調動電流即可輸出不同的波長,因此各雷射只需涵蓋不同小範圍的波長範圍。串接式取樣光柵使各雷射只需調變單一電極,即可達到高速切換的目的,亦可藉由高反射率鍍膜提升輸出功率,並有效降低元件尺寸。經實驗結果驗證,各雷射不需調動電流即可輸出4個間隔為3.5nm的波長。只需微調各雷射的操作電流與鏡面區的調變電流,便可輸出40個間隔為0.35nm的波長,各波長均可符合國際標準的規定。
新型大範圍可調雷射將串接1.5um與1.57um分佈反饋式反射鏡的設計理念應用於即時水蒸氣與一氧化碳氣體濃度偵測系統中。藉由簡單的製程,我們成功實現新型高速可調式雷射,其輸出波長可同時涵蓋1.5um和1.57um兩波帶,兩波帶均可藉由溫度調變或電流調變,可有大於3nm的可調波長範圍,可使輸出波長輕易對準水蒸氣與一氧化碳吸收頻譜。極窄線寬、良好單模特性與高速波長切換的特性,可簡化氣體濃度監控系統的分析流程,進而降低成本。此型高速可調式雷射藉由量測直接吸收頻譜,已成功地運用在水蒸氣濃度監控系統中。
This thesis focuses on the design and fabrication of two novel fast tunable lasers for fiber optic communication and multi-gas sensor applications.
The first one based on a novel type of grating reflectors is demonstrated aiming for high-speed wavelength-switching applications. Wavelength selectable laser includes an array of distributed-Bragg-reflection type lasers that are combined with a multimode-interference coupler. In order to cover different wavelength bands with simple fabrication, the grating reflector is formed of two sampling grating subsections on waveguides with different thickness. The resultant Bragg-wavelength detuning from the thickness difference between the two SG subsections causes the maximal refection shift to the high-order reflection peaks. A laser array where each laser covers a different wavelength band is realized by varying from laser to laser the corresponding wavelength position of the second-order peak. Each laser has one-side sampling gratings for allowing one-electrode fast tuning. It can also allow high-reflection facet coating to increase output power. The lasing wavelengths of the four lasers are spaced by about 3.5 nm. Each laser can be tuned to cover at least 3.5nm of wavelength span with better than 30 dB side-mode suppression ratio. Forty 50-GHz-spaced channels can be covered with the four-laser array.
The other one based on 1.5-um and 1.57-um cascaded reflectors is realized for multi-gas sensor system to monitor H2O and CO gas mixtures immediately. With simple fabrication, the new design allows the realization of a widely tunable laser sources that can cover the wavelengths of 1.5-um to 1.57-um. In each wavelength band, the laser can be tuned over 3-nm wavelength range to address the H2O or CO absorption line by current tuning and/or temperature tuning. The characteristics of narrow line-width, good side-mode suppression ratio, and fast wavelength switching can simplify the analysis procedures of gas sensing and thus reduce the cost. By direct absorption method, the novel fast tunable laser has been successfully adopted in diode laser sensor system for monitoring of water vapor concentration.
[1] C. A. Brackett, A. S. Acampora, J. Sweitzer, G. Tangonan, M. T. Smith, W. Lennon, K. C. Wang, and R. H. Hobbs, “A Scalable Multiwavelength Multihop Optical Network: A Proposal for Research on All-Optical Networks,” IEEE J. Lightwave Technol., vol. 11, no. 6, pp. 736-752, June 1993.
[2] S. B. Alexander, R. S. Bondurant, D. Burne, V. W. S. Chan, S. G. Finn, and R. Gallager, “A Precompetitive Consortium on Wide-Band All Optical Networks,” IEEE J. Lightwave Technol., vol. 11, no. 6, pp. 714-731, June 1993.
[3] KC Lee and VOK Li, “A wavelength rerouting algorithm in wide area all optical networks,” IEEE J. Lightwave Technology, vol. 14, no. 6, pp. 1218-1228, June 1996.
[4] C. A. Brackett, “Is There an Emerging Consunsus on WDM Networking,” IEEE J. Lightwave Technol., vol. 14, no. 6, pp. 936-941, June 1996.
[5] M. M.-K. Liu, “Principles and Applications of Optical Communications,” IRWIN, chapter 11, 1996.
[6] T. Durhuus, B. Mikkelsen, C. Joergense, S. L. Danielsen, K. E. Stubkjaer, “All-optical wavelength conversion by semiconductor optical amplifiers” IEEE J. Lightwave Technology, vol. 14, no. 6, pp. 942-954, June 1996.
[7] S. J. B. Yoo, “Wavelength conversion technologies for WDM network applications,” IEEE J. Lightwave Technol., vol.14, no.6, pp. 955-966, June 1996.
[8] H. Hatakeyama, K. Kudo, Y. Yokoyama, K. Naniwae, and T. Sasaki, “Wavelength-selectable microarray light sources for wide-band DWDM applications,” IEEE J. Select. Topics Quantum Electronics, vol. 8, no. 6, pp. 1341-1348, Dec. 2002.
[9] K. Yashiki, K. Sato, T. Morimoto, S. Sudo, K. Naniwae, A. Satoshi, K. Shiba, N. Suzuki, T. Sasaki, K. Kudo, and K. Yamaguchi, “Wavelength-selectable light sources fabricated using advanced microarray-selective epitaxy,” IEEE Photon. Technol. Lett., vol. 16, no. 7, pp. 1619-1621, July 2004.
[10] K. Kudo, K. Yashiki, T. Sasaki, Y. Yokoyama, K. Hamamoto, T. Morimoto, and M. Yamaguchi, “1.55-m wavelength-selectable microarray DFB-LDs with a monolithically integrated MMI combiner, SOA, and EA-modulator,” IEEE Photon. Technol. Lett., vol. 12, no.3, pp. 242–244, Mar. 2000.
[11] J. E. Johnson, L. J-P. Ketelsen, D. A. Ackerman, L. Zhang, M. S. Hybertsen, K. G. Glogovsky, C. W. Lentz, W. A. Asous, C. L. Reynolds, J. M. Geary, K. K. Kamath, C. W. Ebert, M. Park, G. J. Przybylek, R. E. Leibenguth, S. L. Broutin, J. W. Stayt, L. J. Peticolas, R. L. Hartman, and T. L. Koch, “Fully Stabilized Electro-absorption-Modulated Tunable DBR Laser Transmitter for Long-Haul Optical Communications,” IEEE J. Select. Topics Quantum Electronics, vol. 7, no. 2, pp. 168-177, Apr. 2001.
[12] L. A. Coldren, “Monolithic tunable diode lasers,” IEEE J. Select. Topics Quantum Electronics, vol. 6, no. 6, pp. 988-999, Dec. 2000.
[13] A. J. Ward, D. J. Robbins, G. Busico, E. Barton, L. Ponnampalam, J. P. Duck, N. D. Whitbread, P. J. Williams, D. C. J. Reid, A. C. Carter, and M. J. Wale, “Widely tunable DS-DBR laser with monolithically integrated SOA design and performance,” IEEE J. Select. Topics Quantum Electronics, vol. 11, pp. 149-156, 2005.
[14] Y. A. Akulova, G. A. Fish, P. C. Koh, C. L. Schow, P. Kozodoy, A. P. Dahl, S. Nakagawa, M. C. Larson, M. P. Mack, T. A. Strand, C. W. Coldren, E. Hegblom, S. K. Penniman, T. Wipiejewski, and L. A. Coldren, “Widely tunable electroabsorption-modulated sampled-grating DBR laser transmitter,” IEEE J. Select. Topics Quantum Electronics, vol. 8, no. 6, pp. 1349-1357, Dec. 2002.
[15] V. Jayaraman, Z. M. Chuan, and L. A. Coldren, “Theory, design, and performance of extended tuning range semiconductor lasers with sampled gratings,” IEEE J. Quantum Electronics, vol. 29, no. 6, pp. 1824–1834, June 1993.
[16] E. Buimovich, and D. Sadot, “Physical limitation of tuning time and system considerations in implementing fast tuning of GCSR lasers,” IEEE J. Lightw. Technol., vol. 22, no. 2, pp.582-588, Feb. 2004.
[17] R. O’Dowd, S. O’Duill, G. Mulvihill, N. O’Gorman, and Y. Yu, “Frequency Plan and Wavelength Switching Limits for Widely Tunable Semiconductor Transmitters,” IEEE J. Select. Topics Quantum Electronics, vol. 7, no. 2, pp. 259-269, Mar. 2001.
[18] 張英發, “設計與製作以取樣光柵為基礎之分波多工雷射光源, “博士論文, 台灣科技大學, 民國九十一年.
[19] S. L. Lee, I. F. Jang, C. Y. Wang, C. T. Pien, and T. T. Shih, ‘Monolithically Integrated Multiwavelength Sampled Grating DBR Lasers for Dense WDM Applications,’ IEEE J. of Selected Topics in Quantum Electronics, vol.6, no.1, pp. 197-206, Feb. 2000.
[20] S. L. Lee, “Analytical Formula of Wavelength Dependent Transparent Current and its Implications for Designing Wavelength Sensors and WDM Lasers,” IEEE J. of Selected Topics in Quantum Electronics, vol.7, no.2, pp. 201-209, Apr. 2001.
[21] I. F. Jang and S. L. Lee, “Simple Approaches of Wavelength Registration for Monolithically Integrated DWDM Laser Arrays,” IEEE Photon. Technol. Lett., vol.14, no. 12, pp. 1659-1661, Dec. 2002.
[22] I. F. Jang, S. L. Lee, C. Y. Wang, and Y. H. Jan, “Realization and Performance of As-Fabricated SGDBR Multiwavelength Laser Arrays,” IEEE Photon. Technol. Lett., vol.13, no. 9, pp.933-935, Sep. 2001.
[23] G. P. Agrawal and N. K. Dutta, Semiconductor Lasers, New York: Van Nostrand Reinhold, 1993.
[24] L. A. Coldren and S.W. Corzine, Diode Lasers and Photonic Integrated Circuits, New York: Wiley, Ch. 3, 1995.
[25] J. P. Weber, “Optimization of Carrier-Induced Effective index Change in InGaAsP Waveguides- Application to Tunable Bragg filters, ” IEEE J. Quantum Electronics, vol. 30, no. 8, Aug. 1994.
[26] F. Naoki, K. Takaaki, I. Mitsuteru, K. Fumiyoshi, O. Hiroshi, K. Yoshihiro, K. Yasuhiro, Y. Yuzo, and T. Yuichi, “Inherently Mode-Hop-Free Distributed Bragg Reflector (DBR) Laser Array,” IEEE J. Select. Topics Quantum Electronics, vol. 9, no. 5, pp. 1132-1137, Oct. 2003.
[27] M. L. Masanovic, V. Lal, J. A. Summers, J. S. Barton, E. J. Skogen, L. G. Rau, L. A. Coldren, and D. J. Blumenthal, “Widely tunable monolithically integrated all-optical wavelength converters in InP,” IEEE J. Lightw. Technol., vol. 23, no. 3, pp.1350-1362, Mar. 2005.
[28] N. S. Lagali, M. R. Paiam, and R. I. MacDonald, “Theory of variable-ratio power splitters using multimode interference couplers,” IEEE Photon. Technol. Lett., vol. 11, no. 6, pp. 665-667, 1999.
[29] J. P. Weber, “Optimization of the Carrier-Induced Effective Index Change in InGaAsP Waveguides-Application to Tunable Bragg Filters,” IEEE J. Quantum Electron., vol. 30, no. 8, pp. 1801–1816, Aug. 1994.
[30] S.-L. Lee, C.-Y. Chien, H.n-W. Tsao, and J. Wu, “Practical Considerations of Using Tunable Lasers for Packet Routing in Multiwavelength Optical Networks,” Proc. of 2003 International Conference on Parallel Processing Workshops, pp. 325-331, Kaosiung, Taiwan, 2003.
[31] F. J. McAleavey, J. O’G Gorman, J. F. Donegan, B. D. MacCraith, J. Hegarty, and G. Maze, “Narrow linewidth, tunable Tm3+-doped fluoride fiber laser for optical-based hydrocarbon gas sensing,” IEEE J. of Selected Topics in Quantum Electronics, vol. 3, no. 4, pp. 1103-1110, Aug. 1997.
[32] F. Capasso, C. Gmachl, R. Paiella, A. Tredicucci, A. L. Hutchinson, D. L. Sivco, J. N. Baillargeon, and A. Y. Cho, “New frontiers in quantum cascade lasers and applications,” IEEE J. of Selected Topics in Quantum Electronics, vol. 6, no. 6, pp. 931-947, Dec. 2000.
[33] J. Limpert, H. Zelimer, A. Tunnermann, D. G. Lancaster, R. Weidner, D. Richter, and F. K. Tittel, “Tunable continuous wave DFG-based gas sensor using fibre amplified 1.5-m external cavity diode laser and high power 1m diode laser,” IEEE Electron. Lett., vol. 36, no. 20, pp. 1739-1741, Sep. 2000.
[34] Y. Zhang, W. Jin, H. B. Yu, M. Zhang, Y. B. Liao, H. L. Ho, M. S. Demokan, G. Stewart, B. Culshaw, and Y. H. Li, “Novel intracavity sensing network based on mode-locked fiber laser,” IEEE Photonics Tech. Lett., vol. 14, no. 9, pp. 1336-1338, Sep. 2002.
[35] R. M. Mihalcea, D. S. Baer, and R. K. Hanson, “A diode-laser absorption sensor system for combustion emission measurements,” Meas. Sci. Technol., vol. 9, no. 3, pp. 327-338, Mar. 1998.
[36] V. Weldon, J. O’Gorman, J. J. Perez-Camacho, and J. Hegarty, “Oxygen sensing using single frequency GaAs-AlGaAs DFB laser diodes and VCSELs,” IEEE Electron. Lett., vol. 32, no. 3, pp. 219-221, Feb. 1996.
[37] K. Boylan, V. Weldon, D. McDonald, J. Rawsthorne, J. O’Gorman, and J. Hegarty, “A sampled grating distributed Bragg reflector laser diode for spectroscopic based multi-gas detection at 1.5m,” Lasers and Electro-Optics Conference , Europe, Sep. 2000.
[38] R. M. Mihalcea, D. S. Baer, and R. K. Hanson,” Diode laser sensor for measurements of CO, CO2, and CH4 in combustion flow,” Appl. Opt., vol. 36, no. 33, pp. 8745-8752, Nov. 1997.
[39] J. Hong, H. Kim, F. Shepherd, C. Rogers, B. Baulcomb, and S. Clements, “Matrix-Grating Strongly Gain-Coupled (MG-SGC) DFB Lasers with 34-nm Continuous Wavelength Tuning Range,” IEEE Photonics Tech. Lett., vol. 11, no. 5, pp. 515-517, May 1999.
[40] R. Phelan, V. Weldon, M. Lynch, and J. F. Donegan, “Simultaneous multigas detection with cascaded strongly gain coupled DFB laser by dual wavelength operation,” IEEE Electron. Lett., vol. 38, no. 1, pp. 31-32, Jan. 2002.
[41] L. S. Rothman, A. Barbe, D. C. Benner, L. R. Brown, C. Camy-peyret, M. R. Carleer, K. Chance, C. Clerbaux, V. Dana, V. M. Devi, A. Fayt, J. –M. Flaud, R. R. Gamache, A. Goldman, D. Jacquemart, K. W. Jucks, W. J. Lafferty, J. –Y. Mandin, S. T. Massie, V. Nemtchinov, D. A. Newnham, A. Perrin, C. P. Rinsland, J. Schroeder, K. M. Smith, M. A. H. Smith, K. Tang, R. A. Toth, J. Vander Auwera, P. Varanasi, and K. Yoshino,” The HITRAN Molecular Spectroscopic Database: Edition of 2000 Including Updates through 2001,” J. Quant. Spectrosc. And Rad. Transfer 82, pp. 5-44, 2003.
[42] B. I. Miller, U. Koren, and M. D. Chien, “Tensile-strained InGaAs/InGaAsP quantum-well optical amplifiers with a wide spectral gain region at 1.55um,” IEEE Photon. Technol. Lett., vol. 5, no. 5, pp. 520-522, May. 1993.
[43] C.-F. Lin, B.-L. Lee, and B.-J. Lin, “Broad-band superluminescent diodes fabricated on a substrate with asymmetric dual quantum wells,” IEEE Photon. Technol. Lett., vol. 8, no. 11, pp. 1456-1458, Nov. 1996.
[44] H. S. Gingrich, D. R. Chumney, S.-Z. Sun, S. D. Hersee, L. F. Lester, and S. R. Brueck, “Broadly tunable external cavity laser diodes with staggered thickness multiple quantum wells,” IEEE Photon. Technol. Lett., vol. 9, no. 2, pp. 155-157, Feb. 1997.
[45] T. Semenov, V. R. Shidlovski, and S. A. Safin, “Wide spectrum single quantum well superluminescent diodes at 0.8m with bent optical waveguide,” Electron. Lett., vol. 29, no. 10, pp. 854-857, May 1993.
[46] T. R. Chen, L. Eng, Y. H. Zhuang, and A. Yariv, “Quantum well super luminescent diode with very wide emission spectrum,” Appl. Phys. Lett., vol. 56, no. 14, pp. 1345-1346, Apr. 1990.
[47] M. Gharavi, and S. G. Buckley, “Single diode laser sensor for wide-range H2O temperature measurements,” Applied Spectro., vol. 58, no. 4, pp. 468-472, Apr. 2004.