簡易檢索 / 詳目顯示

研究生: 張安裕
An-yu Chang
論文名稱: 設計與製作具主動型布拉格反射鏡之可調式雷射
Design and Fabrication of Wavelength Tunable Laser with Active Distributed Bragg Reflector
指導教授: 李三良
San-liang Lee
口試委員: 林清富
Ching-fuh Lin
吳靜雄
Jing-shown Wu
徐世祥
Shih-hsiang Hsu
學位類別: 碩士
Master
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2013
畢業學年度: 101
語文別: 中文
論文頁數: 94
中文關鍵詞: 可調式雷射DBR雷射主動型DBR結構
外文關鍵詞: Active DBR structure, Wavelength tunable laser, DBR laser
相關次數: 點閱:146下載:6
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 為應用於NG-PON2技術下,本論文欲製作DBR型式之可調式雷射,由於一般型DBR雷射會因注入被動區的電流而使得光損耗增加,為改善此現象,本論文將設計與製作具主動式布拉格反射鏡之可調式雷射。在材料結構方面,本論文採用偏移量子井結構,在下方波導層置入單一量子井結構,透過模擬軟體模擬並設計磊晶結構。再以套裝軟體分析材料,可以得到主動區與被動區的量子井結構與光柵層的光侷限因子分別為0.059、0.01和0.131,而內部耦合效率為93%,再透過軟體得到主被動區之折射率與光柵耦合係數,設計出可自由調整光柵長度之光罩,期望能找到一最佳光柵區長度,能得到適當的光增益與反射率。在實驗方面,本論文同時成功製作出具主動式布拉格反射鏡之可調式雷射與監控法布里-裴洛雷射,藉由量測監控法布里-裴洛雷射光頻譜,可以知道增益頻譜之峰值約在1545 nm;藉由量測光柵區,可以得知布拉格波長約為1555 nm。具主動式布拉格反射鏡之可調式雷射的臨限電流為14 mA,接觸阻抗約12 Ω,輸出波長1555 nm,光功率可達10 mW以上,在整個波長調動範圍內可以調動6個通道共3 nm,通道間距為0.68 nm,除模態轉換間,SMSR都可以維持在40 dB,而光功率也不會有衰減現象,整體變化幅度約 0.34 dB。


    The goal of this thesis is to design and realize a tunable DBR laser with active distributed Bragg reflector. The tunable laser can be used in NG-PON2 and covers the required 2.4 nm of wavelength tuning range. An active DBR (ADBR) structure has an active layer in the DBR section to compensate the optical loss and achieve stable single mode operation during the wavelength tuning. The device is based on an offset quantum-well structure in which a single QW structure is inserted in the passive sections.
    The multi-quantum well structures are designed with the PIC3D software while the optical confinement factor in this structure is analyzed with FIMMWAVE software. The analysis reveals that the optical confinement factor for gain materials in active section, passive section, and grating section are 0.059, 0.01, and 0.131, respectively, while the internal coupling efficiency between the active and passive sections is about 93%.
    For experimental demonstration, we have successfully fabricated tunable DBR lasers with active distributed Bragg reflectors. FP lasers with the same multi-quantum well structure are also fabricated as the reference devices. From the spectra of the FP lasers and the devices made of grating section, a gain peak of around 1545 nm and a Bragg wavelength of around 1555 nm are observed. Our best ADBR laser has a threshold current of 14 mA, an electrical contact resistance of 12 Ω, a lasing wavelength of 1555 nm, a SMSR of 40 dB, and an optical output power of 8 mW when the gain current is fixed at 50 mA. During the tuning process, the lasing wavelength can be tuned over 6 channels of more than 3 nm with a wavelength spacing of 0.68nm. The SMSR can maintain at 40dB; and its optical power variation is less than 0.34dB.

    中文摘要 i Abstract ii 致謝 iii 目錄 vi 圖目錄 iv 表目錄 ix 第一章 研究動機與元件技術介紹 1 1-1 前言 1 1-2 邊射型雷射簡介 4 1-3 具主動型布拉格反射鏡之可調式雷射原理與簡介 7 1-3-1 傳統型布拉格反射鏡雷射 7 1-3-2 具主動型布拉格反射鏡之可調式雷射 9 1-4 研究方向 11 1-5 論文架構 12 第二章 材料模擬與元件設計 13 2-1 簡介與模擬軟體 13 2-2元件材料結構設計與模擬 14 2-2-1 量子井結構設計重點簡介 14 2-2-2 量子井結構設計 17 2-3 元件幾何結構模擬 19 2-4 元件長度設計 21 第三章 元件製程步驟 26 3-1 光罩設計 27 3-2 製程流程 28 3-3製程結果與討論 38 第四章 元件量測 48 4-1 監控元件量測 48 4-1-1 監控法布里-裴洛雷射量測 48 4-1-2 監控光柵區量測 53 4-2 ADBR雷射光功率-電流-電壓量測 58 4-3 輸出波長與旁模抑制比量測 63 4-4 元件波長調動特性量測 70 第五章 結論 81 5-1 成果與討論 81 5-2 未來研究方向 84 參考文獻 86 附錄A 詳細製程步驟 90

    [1] 楊淳良, 趙亮琳, 「光纖通信網路」,五南圖書出版公司,民國96年。
    [2] F. J. Effenberger, “The XG-PON System: Cost Effective 10 Gb/s Access,” IEEE Journal of Lightwave Technology, vol. 29, no. 4, pp. 403 – 409, 2011.
    [3] Y. Luo, X. Zhou, F. Effenberger, X. Yan, G. Peng, Y. Qian and Y. Ma, “Time- and Wavelength-Division Multiplexed Passive Optical Network (TWDM-PON) for Next-Generation PON Stage 2 (NG-PON2),” IEEE Journal of Lightwave Technology, vol. 31, no. 4, pp. 587-593, 2013.
    [4] A. Banerjee, Y. Park, F. Clarke, H. Song, S. Yang, G. Kramer, K. Kim and B. Mukherjee, “Wavelength dividion multiplexed passive optical net worl(WDM-PON) technologies for broadband acess: a review [Invired]” OSA Journal of Optical Networking, vol. 4, no. 11, pp. 737-758, 2005.
    [5] H. Ishii, K. Kasaya, and H. Oohashi ”Wavelength-tunable Laser for Next-generation Optical Networks,” NTT Technical Review, vol. 9, no. 3, pp. 1-5, 2011.
    [6] J. Buus and E. J. Murphy, “Tunable Laser in Optical Networks,” IEEE Journal of Lightwave Technology., vol. 24, mo. 1, pp. 5-11, 2006.
    [7] 盧廷昌, 王興宗, 「半導體雷射技術」,五南圖書出版公司,民國99年。
    [8] 曾紘維, 「設計與製作高速雷射二極體基板之技術」,碩士論文,國立台灣科技大學,台北(2012) 。
    [9] S. O. Kasap, Optoelectronics and Photonics Principles and Praticles, Pearson, 1999.
    [10] D. Derickson, “Fiber Optic Test and Measurement,” Prentice-Hall, pp. 1-51, 1998.
    [11] L. A. Coldren, and S. W. Corzine, Diode lasers and photonic integrated circuits, John Wiley and Sons, NY, 1995.
    [12] 姚久琳, 「設計與製作新型高速可調式雷射」,博士論文,國立台灣科技大學,台北(2004) 。
    [13] 潘彥廷, 「設計與製作低密度分波多工雷射陣列之技術」,博士論文,國立台灣科技大學,台北(2006) 。
    [14] L. A. Coldren,, G. A. Fish, Y. Akulova, J. S. Barton, L. Johansson, and C.W. Coldren, Yuji Kotaki, and Hiroshi Ishikawa “Spectral Characteristics of a Three-Section Wavelength-Tunable DBR Laser,” IEEE Journal of Quantum Electronics, vol. 25, no. 6. pp. 1340-1345, 1989.
    [15] M. Oberg, S . Nilsson, T. Klinga, and P. Ojala, “A Three-Electrode Distributed Bragg Reflector Laser with 22 nm Wavelength Tuning Range,” IEEE Photonics Technology Letters, vol. 3, no. 4, pp. 299-301, 1991.
    [16] X. Pan, H. Olesen, and B. Tromborg, “A Theoretical Model of Multielectrode DBR Lasers,” IEEE Journal of Quantum Electronics, vol 24, no. 12, pp. 2423-2432, 1988.
    [17] N. Fujiwara, T. Kakitsuka, M. Ishikawa, F. Kano, H. Okamoto, Y. Kawaguchi, Y. Kondo, Y. Yoshikuni, and Y. Tohmori, “Inherently Mode-Hop-Free Distributed Bragg Reflector (DBR) Laser Array” IEEE Journal of Selected Topics in Quantum Electronics, vol 9, no. 5, pp. 1132-1137, 2003.
    [18] S. Sakano, A. Oka, and N. Chinone, “Wavelength-Tunable Three-Electrode DBR Laser with a Thin-Active Layer in Tuning Regions” IEEE Photonics Technology Letters., vol. 3, no. 10, pp. 866-868, 1991.
    [19] H. Arimoto, H. Sato, T. Kitatani, T. Tsuchiya, K. Shinoda, A. Takei, H. Uchiyama, M. Aoki, and S. Tsuji, “A wavelength-tunable short-cavity DBR laser with active distributed Bragg reflector,” IEICE Electronics Express, vol. 2, no. 5, pp. 170–175, 2006.
    [20] H. Arimoto, T. Kitatani, T. Tsuchiya, K. Shinoda, A. Takei, H. Uchiyama, M. Aoki, and S. Tsuji, “Wavelength-Tunable short-cavity DBR laser array with active distributed Bragg reflector,” IEEE Journal of Lightwave Technology, vol. 24, no. 11, pp. 4366–4371, 2006.
    [21] H. Arimoto, T. Kitatani, T. Tsuchiya, K. Shinoda, T. Ohtoshi, M. Aoki, and S. Tsuji “N-Type Doping to an Active-Short Cavity DBR Laser to Expand Its Continuous Tuning Range,” IEEE Photonics Technology Letters, vol. 20, no. 16, pp. 1348-1350, 2008.
    [22] H. Arimoto, H. Sato, T. Kitatani, T. Tsuchiya, ”A wavelength-tunable short-cavity DBR laser with active distributed Bragg reflector” IEICE Electronics Express, vol.2, no.5, pp. 170-175, 2006.
    [23] 宣融, 「設計與製作非溫控高速分布反饋式雷射」,碩士論文,國立台灣科技大學,台北(2002) 。
    [24] 吳奇璋, 「分佈反饋式雷射與行波式電致吸收調變器積體化元件製作」,碩士論文,國立台灣科技大學,台北(2002) 。
    [25] 游源晉, 「電致吸收調變雷射之積體化元件設計與製作」, 碩士論文,國立台灣科技大學,台北(2012)。

    QR CODE