簡易檢索 / 詳目顯示

研究生: 陳禎傑
Chen-chieh Chen
論文名稱: 滑動模式控制器於三相感應電動機驅動器之應用
Implementation of Speed Control of Three-Phase Induction Motor Drives Using Sliding Mode Controller
指導教授: 王文智
Wen-Jieh, Wang
黃仲欽
Chung-Chien, Huang
口試委員: 葉勝年
Sheng-Nian, Yeh
王順源
Shun-Yuan, Wang,
學位類別: 碩士
Master
系所名稱: 電資學院 - 電機工程系
Department of Electrical Engineering
論文出版年: 2007
畢業學年度: 95
語文別: 中文
論文頁數: 97
中文關鍵詞: 感應電動機變頻器
外文關鍵詞: induction motor, sliding mode, inverter
相關次數: 點閱:240下載:5
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本文擬研製ㄧ以數位信號處理器為基礎之三相感應電動機滑動模式轉速控制系統。首先將三相感應電動機之數學模式,經由座標軸轉換關係推導出以同步旋轉座標為參考座標之數學模式,再根據間接式轉子磁場導向控制法達到解耦合。由電壓空間向量脈波寬度調變輸出可變頻率及可變電壓之三相交流電源驅動三相感應電動機。為了克服感應電動機機械參數變化及負載干擾對控制響應的影響,轉速控制採用滑動模式控制器取代傳統比例-積分控制器,以提高轉速控制系統之響應及負載變動之適應性。
本文採用數位信號處理器為整體系統之控制核心,實際應用於 600 W 之三相感應電動機轉速控制系統。由實驗結果顯示,本論文所推導之滑動模式控制法則,具有良好轉速控制響應且能有效克服負載干擾之強健性。


The objective of this thesis is to develop a DSP-based sliding-mode controller for induction motor speed control system. The mathematical model of induction motor in synchronously rotating reference frame is derived from the three-phase circuit via the coordinate transformation. According to indirect field-oriented vector control method, the thesis achieves decoupling of the motor torque and rotor flux amplitude. The variable voltage and frequency of three-phase power source based on voltage space vector pulse-width modulation drives induction motor. Due to the fact that the variations of mechanical parameter and load disturbances affect the control responses, sliding mode controller instead of conventional PI-controller enhancing the response of speed control system and adaptation of load disturbance is proposed.
Finially, an experimental system is actually implemented in three-phase induction motor of 600 W using digital signal processor as the core of the speed control system. Experimental results confirm that the sliding mode control rule yield not only better response in speed but also superior robustness in external load disturbances.

中文摘要 I 英文摘要 II 誌 謝 III 目 錄 IV 符號索引 VII 圖表索引 XI 第一章 緒論 1 1.1 研究動機及目的 1 1.2 相關文獻回顧 2 1.3 整體系統架構 7 1.4 本文特色及大綱 8 第二章 三相感應電動機之數學模式及控制 10 2.1 前言 10 2.2 三相感應電動機之電氣方程式 10 2.2.1 a-b-c相之數學模式 11 2.2.2 d-q軸之三相感應電動機模式 14 2.3 三相感應電動機之機械方程式 20 2.4 三相感應電動機之可變頻率及可變電壓控制 21 2.5 三相感應電動機之磁場導向控制 23 2.5.1 間接式轉子磁場導向控制法 23 2.6 結語 26 第三章 三相變頻器及其控制 27 3.1 前言 27 3.2 三相變頻器之分析 28 3.3 三相變頻器之電壓空間向量脈波寬調變策略 30 3.4 結語 39 第四章 電流及轉速控制器之設計 40 4.1 前言 40 4.2 電流閉迴路控制之比例-積分控制器 41 4.3 轉速閉迴路控制之比例-積分控制器 43 4.4 滑動模式控制器 45 4.4.1 滑動模式控制器原理 45 4.4.2 轉速閉迴路控制之滑動模式控制器 48 4.5 結語 53 第五章 實體製作及測試結果 54 5.1 前言 54 5.2 硬體電路 54 5.2.1 數位信號處理器之介面電路 55 5.2.2 三相變頻器之製作 56 5.2.3 電流感測電路之製作 57 5.2.4 編碼器及轉速之回授 58 5.2.5 數位轉類比轉換器(D/A converter) 59 5.2.6 磁粉式煞車系統 60 5.3 軟體程式規劃 61 5.4 實測結果 65 5.4.1 三相感應電動機純量控制之實測結果 66 5.4.2 三相感應電動機間接式轉子磁場導向控制之實測結果 69 5.5 結語 87 第六章 結論與未來研究方向 89 6.1 結論 89 6.2 未來研究方向 89 參考文獻 91 附錄A 三相感應馬達之額定規格與參數 95 附錄B 數位/類比電路圖 96 作者簡介 97

[1] P. C. Krause, Analysis of Electric Machinery, McGraw-Hill, New York, 1987.
[2] B. K. Bose, Power Electronics and AC Drives, Prentice-Hall, Englewood Cliffs, New Jersey, 1986.
[3] P. Vas, Vector Control of AC Machines, Clarendon Press, 1990.
[4] I. Boldea and S. A. Nasar, Vector Control of AC Drives, CRC Press, 1992.
[5] Y. Dote, Servo Motor and Motion Control Using Digital Signal Processors, Prentice-Hall, Englewood Cliffs, New Jersay, April 1990.
[6] 劉昌煥、許溢适,“AC 伺服系統的理論與設計實務”,文笙書局,民國八十一年。
[7] 劉昌煥,“交流電機控制”,東華書局,中華民國九十二年五 月。
[8] F. Blaschke, “The principle of field orientation as applied to thenew Transvector closed loop control system for rotating field machines”, Siemens Rev., vol. 34, pp. 217-220, May 1972.
[9] K. Hasse, “Zur Dynamik Drehzahlgeregelter Antriebe Mit Stromrichtergespeisten Asynchron Kurzschlublaufermaschinen”, Dissertation, Techn. Hochsch., Diss., July 17, 1969.
[10] 王俊傑,“感應馬達之複合型適應伺服控制器之分析及研製”, 國立台灣科技大學電機工程技術研究所博士論文,中華民國八十六年十二月。
[11] 陳進益,“基於被動性之感應馬達位置控制與轉子電阻估測”, 國立台灣科技大學電機工程研究所,中華民國九十一年一月。
[12] P. Pillay and V. Levin, “Mathematical Model for Induction Machines”, Proc. IEEE-IAS Annual Meeting, pp. 606-616, 1995.
[13] Y. Zhao and T. A. Lipo, “An Approach to Modeling and Field-Oriented Control of a Three Phase Induction Machine with Structural Unbalance”, Proc. of IEEE Applied Power Electronic Conference, pp. 380-386, 1996.
[14] E. Levi, “Impact of Iron Loss on Behavior of Vector Controlled Induction Machines”, Proc. IEEE-IAS Annual Meeting, pp. 74-80, 1944.
[15] J. W. Choi, D. W. Chung and S. K. Sul, “Implementation of Field Oriented Induction Machine Considering Iron Losses”, Proc. of IEEE Applied Power Electronic Conference, pp. 375-379, 1996.
[16] D. M. Bord and D. W. Novotny, “Current Control of VSI-PWM Inverters”, IEEE Trans. On Industrial Applications, vol. 21, no. 4, pp. 562-570, 1985.
[17] R. D. Lorenz, T. A. Lipo and D. W. Novotny, “Motion Control with Induction Motors”, Proceeding of the IEEE, vol. 82, pp. 1215-1240 , 1994.
[18] E. Y. Y. Ho and P. C. Sen, “Decoupling control of induction motor drives”, IEEE Trans., vol. IE-35, no. 2, pp. 253-262, 1988.
[19] R. D. Doncker and D. W. Novotny, “The universal field oriented controller”, IEEE Trans. Ind. Appl., pp. 450-456, Oct. 1988.
[20] X. Xu, R. D. Donker and D. W. Novonty,“A Stator Flux Oriented Induction Machine Drive”, Proc. of IEEE Power Electronics Specialist’s Conference, pp. 870-876, 1988.
[21] D. I. Kim, I. J. Ha and M. S. Ko, “Control of Induction Motor via Feedback Linearization with Input-Output Decoupling”, Int. J. of Control, vol. 51, no. 4, pp. 863-883, 1990.
[22] D. I. Kim, I. J. Ha and M. S. Ko, “Control of Induction Motors for Both High Dynamic Performance and High Power Efficiency”, IEEE Trans. on Industrial Electronics, vol. 39, no. 4, pp. 323-333, 1992.
[23] M. Bodson, J. Chiasson and R. T. Novotnak, “High-Performance Induction Motor Control via Input-Output Linearization”, IEEE Control Syst. magazine, pp. 25-33, 1994.
[24] J. Chiasson, “Dynamic Feedback Linearization of Induction Motor”, IEEE Trans. On Automatic Control, vol. 38, no. 10, pp. 1588-1594, 1993.
[25] P. L. Jansen and R. D. Lorenz, “A Physically Insightful Approach to the Design and Accuracy Assessment of Flux Observers for Field Oriented Induction Machine Drives”, Proc. IEEE-IAS Annual Meeting, pp. 570-577, 1992.
[26] P. L. Jansen, R. D. Lorenz and D. W. Novotny, “Observer-Based Direct Field Orientation: Analysis and Comparison of Alternative Methods”, Proc. IEEE-IAS Annual Meeting, pp. 536-543, 1993.
[27] N. Langovsky, M. Elbuluk and D. Kankam, “Non-linear Flux Observer with On-line Parameter Tuning for Wide Speed Operation of Induction Machine”, Proc. IEEE-IAS Annual Meeting, pp. 144-151, 1995.
[28] D. C. Lee, S. K. Sul and M. H. Park, “High Performance Current Regulator for a Field-Oriented Controlled Induction Motor Drive”, IEEE Trans. on Industrial Applications, vol. 30, no. 5, pp. 1247-1257, 1994.
[29] C. P. Bottura, J. L. Silvino and P. D. Resende, “A Flux Observer for Induction Machines Based on a Time-Variant Discrete Model”, IEEE Trans. on Industrial Applications, vol. 29, no. 2, pp. 349-354, 1993.
[30] C. Manes, F. Parasiliti and M. Tursini, “DSP Based Field-Oriented Control of Induction Motor with a Nonlinear State Observer”, Proc. of IEEE Power Electronics Specialist’s Conference, pp. 1254-1259, 1996.
[31] S. B. Cho and D. S. Hyun, “A robust Indirect Vector Control for the Rotor Time Constant Variation of Induction Machine”, Proc. of IEEE IECON Conf. Rec., pp. 1240-1245, 1996.
[32] L. Umanand and S. R. Bhat, “Online Estimation of Stator Resistance of an Induction Motor for Speed Control Applications”, IEE Proceedings Electric Power Applications, vol. 142, no. 2, pp. 97-013, 1995.
[33] Y. Xue, T. G. Habetler and D. M. Divan, “A low cost stator flux oriented voltage source variable speed drive”, Proc. IEEE-IAS Annual Meeting, pp. 410-415, 1990.
[34] B. K. Bose and M. G. Simoes, “Speed Sensorless Hybrid Vector Controlled Induction Motor Drive”, Proc. IEEE-IAS Annual Meeting, pp. 137-143, 1995.
[35] C. J. Bonanno, L. Zhen and L. Xu., “A Direct Field Oriented Induction Machine Drive with Robust Flux Estimator for Position Sensorless Control”, Proc. IEEE-IAS Annual Meeting, pp. 166-173, 1995.
[36] T. Kanmachi and I. Takahashi, “Sensorless Speed Control of an Induction Motor with No Influence of Secondary Resistance Variation”, Proc. IEEE-IAS Annual Meeting, pp. 408-413, 1993.
[37] F. Z. Peng and T. Fukao, “Robust speed identification for speed-sensorless vector control of induction motors”, IEEE Trans. on Industrial Application, vol. 30, no. 5, pp. 1234-1240, 1994.
[38] S. Z. Sarptuk, Y. Istefanopulos and O. Kaynak, “On The Stability of Discrete-Time Sliding Mode Control for Constrained Robots”, Systems& Control Letters, pp. 145-152, 1990.
[39] K. Furuta, “Sliding Mode Control of a Discrete-Variable Structure”, Control& Control Letters, pp. 145-152, 1990.
[40] J. Y. Hung, R. M. Nelms and P. B. Stevenson, “An Ouput Feedback Sliding Mode Speed Regulator for DC Drives”, IEEE Trans, on Ind. Appl, vol. 30, no. 3, pp. 691-698, 1994.
[41] N. Mohan, T. M. Undeland and W. P. Robbins, PowerElectronics, John Wiley & Sons, 1989.
[42] Spectrum Digital Inc., eZdsp LF2407A Technical Reference, 2001.
[43] Texas Instruments, Digital Motor Control Software Library, SPRU485A, August 2001.
[44] G. F. Franklin, D. J. Powell and M. L. Workman, Digital Control of Dynamic Systems, Addison-Wesley, 1990.
[45] 張道弘,“ PID 控制理論與實務”,全華出版社,1995。
[46] 陳永平、張浚林,“可變結構控制設計(修訂版)”,全華出版社, 2002。
[47] 龔應時、陳建武、徐永松,“TMS320F/C24x DSP控制器原理與應用”,滄海書局,2000。
[48] 董勝源,“DSP TMS320LF2407與C語言控制實習”,長高出版社 2004。
[49] 林容益,“TMS320F240X組合語言及C語言多功能控制應用”,全華出版社,2005。
[50] 白中和,“類比電路技術提升101招”,建興出版社,2003。

無法下載圖示 全文公開日期 2008/01/30 (校內網路)
全文公開日期 本全文未授權公開 (校外網路)
全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
QR CODE