簡易檢索 / 詳目顯示

研究生: 林資敬
Tzu-Ching Lin
論文名稱: 多功能奈米碳管/鎳複合結構光電感測元件之研發
The Development of Multifunctional Optoelectronic and Sensing Devices Based on CNTs/Ni Composite Structure
指導教授: 黃柏仁
Bohr-Ran Huang
口試委員: 林唯芳
Wei-Fang Su
黃炳照
Bing-Joe Hwang
朱瑾
Jinn P. Chu
程金保
Chin-Pao Cheng
蘇春熺
Chun-Hsi Su
謝章興
Jang-Hsing Hsieh
學位類別: 博士
Doctor
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2011
畢業學年度: 100
語文別: 英文
論文頁數: 120
中文關鍵詞: 奈米碳管/鎳複合結構氫氣感測器酸鹼溶液感測元件場發射元件
外文關鍵詞: CNTs/Ni Composite Structure, Hydrogen sensors, pH sensors, Field Emission Devices
相關次數: 點閱:355下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本論文以開發奈米複合鍍膜技術進行多功能光電感測元件之製作,此技術以低溫製程(80度)、短沉積時間(60秒)、低成本及單次製程同時於非導體玻璃基材上製作葉片狀奈米碳管/鎳(CNT/Ni)之複合鍍膜,奈米複合鍍膜具有極佳電性與基材黏著性,應用於光電感測元件是相當有潛能。

首先以奈米複合鍍膜製作電阻式氣體感測器,感測器於不同氛圍(氫氣、甲烷、乙炔與氧氣)下進行測試,其中以氫氣感測能力最佳,於低濃度(200ppm)氫氣下得到0.73%感測響應,其中響應時間與恢復時間分別為1093秒及150秒;以鈀奈米金屬粒子(Pd NPs)修飾於複合鍍膜上形成鈀/奈米碳管/鎳(Pd/CNT/Ni)氣體感測器,於200ppm氫氣濃度下感測響應能力有效提高至7.3%(約莫提高10倍),響應時間也縮短為312秒,鈀奈米粒子有效的吸附氫氣並加快氫氣由鈀轉移至奈米碳管上達到感測響應能力的大幅改善。另外利用裂縫技術製作水平式奈米碳管於複合鍍膜,其200ppm氫氣濃度下感測響應能力提昇至14.1%(約提高19倍),水平式奈米碳管擁有更多的表面積吸附氫氣以及熱處理後之奈米碳管擁有適當的氧含量與缺陷進而增強感測響應能力。

接著以複合鍍膜作為酸鹼感測膜進行延伸式閘極離子感測電晶體製作,純鎳薄膜不具有酸鹼溶液分辨能力,原始奈米碳管之酸鹼感測響應為46 mV/pH,奈米複合鍍膜得到較佳感測響應為59 mV/pH,由於奈米複合鍍膜過程中產生二氧化鎳可以有效增強溶液中氫離子之吸附動作進而提高其酸鹼感測響應能力。

奈米碳管/鎳複合鍍膜進行離子式氣體感測器製作與量測,以氫氣與氧氣分別進行量測,得到於不同壓力下兩種氣體具有相反的崩潰電壓,由於氧氣吸附於複合鍍膜上時相較氫氣不易脫附,因此電子無法順利發射於陽極並造成氧蝕刻效果,造成氧氣感測壓力越高(0.5Torr至100Torr)崩潰電壓也隨著變大(435V至960V),反之氫氣感測造成崩潰電壓是相對的變小(330V至285V)。

奈米複合鍍膜進行場發射特性量測,得到較低的導通電場(1.1 V/μm)與臨限電場(1.7 V/μm)分別於1 μA/cm2及 1 mA/cm2,進行複合鍍膜壽命與穩定性量測得到∼80小時的持續性,是由於複合鍍膜與基材擁有極佳附著性。另者為了提高元件穩定性,於水平式奈米碳管沉積10nm鋯基金屬玻璃薄膜,金屬玻璃薄膜為非晶材料導致場發射特性下降導通電場(2.3 V/μm)與臨限電場(5.4 V/μm),但其壽命可增強至270小時,是因為金屬玻璃薄膜特有的機械特性與增加水平式奈米碳管於裂縫中之黏著性有效提高元件穩定性。


In this work, high performance carbon nanotube/nickel (CNT/Ni) composite films for devices were fabricated by using a nanocomposite plating method. The CNT/Ni composite films were fabricated at low temperatures of 80 ˚C and short time of 60 s for the nanocomposite plating process on glass substrate. The resulting leaf-like CNT/Ni composite film has strong adhesion on the glass substrate. A CNT/Ni composite film modified with palladium nanoparticles (Pd NPs) for hydrogen (H2) gas sensing application are presented. The H2 gas sensing properties of the Pd/CNT/Ni were found to have a much higher sensitivity (7.3 %) and faster response time (312 s) at 200 ppm H2 gas than those prepared without Pd NPs modified (0.7 %, 1092 s). In addition, a simple method using a firing techniques for the production of horizontally aligned carbon nanotube (HACNT)-based hydrogen gas sensors is presented. It is found that the HACNT-based sensors have a much better sensitivity response (approximately 19 times) than the original CNT/Ni film sensors which use a nanocomposite plating technique only.

A leaf-like CNT/Ni composite nanostructure is used as the sensing membrane in an extended-gate field-effect transistor (EGFET) for the pH sensors. While sensing pH within a range of 2-10, the CNT/Ni EGFET exhibits a sensitivity of 59 mV/pH. This simple and low-cost sensing membrane can be applied in disposable biosensors.

Gas ionization sensors based on the field emission properties of the CNT/Ni field emitters were developed in this work. It is found that the breakdown voltage (Vb) slightly decreases from 330 V to 285 V as the pressure of H2 gas increases from 0.5 Torr to 100 Torr. On the contrary, Vb obviously increases from 435 V to 960 V as O2 gas pressure increases from 0.5 Torr to 100 Torr. This may be explained by the depression of the electron emission caused by the adsorption of the O2 gas on the CNT emitters.

The field emission properties of the initial CNT/Ni field emitter show a low turn-on electric field Eon of about 1.1 V/μm with an emission current density of 1 μA/cm2, and a low threshold electric field Eth of about 1.7 V/μm with an emission current density of 1 mA/cm2. In addition A HACNT field emission cathode was coated with a metallic glass thin film (MGTF) to improve the stability of the field emission properties. The field emission properties of the HACNT field emission cathode show a low turn-on electric field Eon of about 2.3 V/μm, a low threshold electric field Eth of about 4.7 V/μm, and a stability time of 78 h. Superior long-term stability (i.e. >270 h) of the MGTF/HACNT field emission cathode is achieved.

Abstract (in Chinese)…………………………………………………………………………I Abstract…………………………………………………………………………………………III Acknowledgements (in Chinese) ………………………………………………………………V Contents …………………………………………………………………………………………VI List of Figures…………………………………………………………………………………IX List of Tables…………………………………………………………………………………XIV Chapter 1 Introduction…………………………………………………………………………1 1.1 Introduction…………………………………………………………………………1 1.2 Motivation and aims……………………………………………………………… 6 Chapter 2 Literature Review…………………………………………………………………11 2.1 Basics of CNTs…………………………………………………………………… 11 2.2 Syntheses and applications of CNT films……………………………………20 2.3 Hydrogen gas sensor based on CNTs……………………………………………29 2.4 Gas ionization gas sensors…………………………………………………… 34 2.5 pH sensors………………………………………………………………………… 36 2.6 Field emission devices………………………………………………………… 39 2.7 Basics of metallic glasses…………………………………………………… 41 Chapter 3 Palladium nanoparticles modified carbon nanotube/nickel composite rods (Pd/CNT/Ni) for hydrogen sensing……………………………………………………45 3.1 Experimental Details…………………………………………………………… 45 3.2 Morphology and characterization of CNT/Ni and Pd/CNT/Ni films………48 3.3 Hydrogen (H2) gas sensing performance of CNT/Ni and Pd/CNT/Ni………51 3.4 Response and recovery time of CNT/Ni and Pd/CNT/Ni sensors………… 57 3.5 Conclusion………………………………………………………………………… 59 Chapter 4 A novel technique for fabrication of horizontally-aligned CNTs (HACNTs) nanostructure for hydrogen gas sensing………………………………………60 4.1 Experimental Details…………………………………………………………… 60 4.2 Morphology and characterization of HACNTs…………………………………63 4.3 Influence of heating temperature on HACNTs……………………………… 66 4.4 Hydrogen (H2) gas sensing properties of HACNTs………………………… 69 4.5 Conclusion………………………………………………………………………… 73 Chapter 5 Leaf-like carbon nanotube/nickel (CNT/Ni) composite membrane extended-gate field-effect transistors (EGFET) as pH sensor…………………………………………………………………………………………… 74 5.1 Experimental Details…………………………………………………………… 74 5.2 Morphology and characterization of purified CNTs, Ni, and CNT/Ni films………………………………………………………………………………………………75 5.3 pH sensing responses of leaf-like CNT/Ni membrane EGFET………………77 5.4 Real-time responses of leaf-like CNT/Ni membrane EGFET……………… 80 5.5 Conclusion………………………………………………………………………… 80 Chapter 6 Gas ionization sensors with carbon nanotube/nickel (CNT/Ni) field emitters………………………………………………………………………………………… 82 6.1 Experimental Details…………………………………………………………… 82 6.2 Field emission properties of CNT/Ni field emitters…………………… 84 6.3 Hydrogen and oxygen gases ionization sensing measurement of CNT/Ni85 6.4 Influence of the H2 and O2 gases ionization sensing on CNT/Ni…… 87 6.5 Conclusion………………………………………………………………………… 89 Chapter 7 The stability of the CNT/Ni field emission cathode fabricated by the composite plating method……………………………………………………………………90 7.1 Experimental Details…………………………………………………………… 90 7.2 Field emission properties of CNT/Ni field emission cathode………… 91 7.3 Influence of long field emission stability testing on CNT/Ni cathode……………………………………………………………………………………………94 7.4 Conclusion………………………………………………………………………… 97 Chapter 8 Long-term stability of a horizontally-aligned carbon nanotube field emission cathode coated with a metallic glass thin film (MGTF/HACNT)………… 98 8.1 Experimental Details…………………………………………………………… 98 8.2 Morphology and characterization of MGTF/HACNT films………………… 99 8.3 Field emission properties of MGTF/HACNT field emission cathodes… 102 8.4 Stability testing of MGTF/HACNT field emission cathodes…………… 104 8.5 Conclusion……………………………………………………………………… 107 Chapter 9 Conclusion and future work………………………………………………… 108 9.1 Concluding remarks.…………………………………………………………… 108 9.2 Future work……………………………………………………………………… 109 References…………………………………………………………………………………… 110 List of Publication (SCI journal papers)…………………………………………… 118

Chapter 1
[1] S. Iijima, Nature 354 (1991) 56.
[2] R.G. Ding, G.Q. Lu, Z.F. Yan, M.A. Wilson, J. Nanosci. Nanotechnol. 1 (2001) 7.
[3] Q.H. Wang, A.A. Setlur, J.M. Lauerhaas, J.Y. Dai, E.W. Seelig, Appl. Phys. Lett. 72 (1998) 2912.
[4] J.L. Kwo, M. Yokoyama, W.C. Wang, F.Y. Chuang, I.N. Lin, Diam. Relat. Mater. 9 (2000) 1270.
[5] L.Wang,Z. Sun, T. Chen,W.Que, Solid State Electron. 50 (2006) 800.
[6] Y. Qin, M. Hu, H. Li, Z. Zhang, Q. Zou, Appl. Surf. Sci. 253 (2007) 4021.
[7] A. Schindler, J. Brill, N. Fruehauf, J.P. Novak, Z. Yaniv, Physica E 37 (2007) 119.
[8] C. Niu, E.K. Sickel, R. Hoch, D. Moy, H. Tennent, Appl. Phys. Lett. 70 (1997) 1480.
[9] J. Kong, N.R. Franklin, C. Zhou, M.G. Chapline, S. Peng, K. Cho, H. Dai, Science 287 (2000) 622.
[10] M. Hirakawa, S. Sonoda, C. Tanaka, H. Murakami, H. Yamakawa, Appl. Surf. Sci. 169–170 (2001) 662.
[11] W.A. Deheer, A. Chatelain, D. Ugarte, Science 75 (1995) 129.
[12] Z.F. Ren, Z.P. Huang, J.W. Xu, J.H. Wang, P. Bush, M.P. Siegal, P.N. Provencio, Science 282 (1998) 1105.
[13] L.M. Yu, C.C. Zhu, Appl. Surf. Sci. 255 (2009) 8359.
[14] Y. Qin, M. Hu, Appl. Surf. Sci. 255 (2009) 7618.
[15] F.G. Zeng, C.C. Zhu, W. Liu, X. Liu, Microelectron. J. 37 (2006) 495.
[16] Y.D. Lee, K.S. Lee, Y.H. Lee, B.K. Ju, Appl. Surf. Sci. 254 (2007) 513.
[17] Z.W. Pan, S.S. Xie, B.H. Chang, L.F. Sun, W.Y. Zhou, G. Wang, Chem. Phys. Lett. 299 (1999) 97.
[18] P.M. Ajayan, S. Iijina, Nature 361 (1993) 333.
[19] Y.M. Liu, Y. Sung, Y.C. Chen, C.T. Lin, Y.H. Chou, M.D. Ger, Electrochem. Solid State Lett. 10 (2007) J101.
[20] D.O. Kim, M.H. Lee, J.H. Lee, T.W. Lee, K.J. Kim, Y.K. Lee, T. Kim, H.R. Choi, J.C. Koo, J.D. Nam, Org. Electron. 9 (2008) 1.
[21] S. Ravindran, S. Chaudhary, B. Colburn, M. Ozkan, C.S. Ozkan, Nano Lett. 3 (2003) 447.
[22] A.Z. Sadek, C. Zhang, Z. Hu, J.G. Partridge, D.G. McCulloch, W. Wlodarski, K. Kalantar-zadeh, J. Phys. Chem. C 114 (2010) 238.
[23] S. Ju, J.M. Lee, Y. Jung, E. Lee, W. Lee, S.J. Kim, Sens. Actuators B (146) 2010 122.
[24] R. Ghasempour, S.Z. Mortazavi, A. Iraji zad, F. Rahimi, Int. J. Hydrog. Energy 35 (2010) 4445.
[25] S.M. Jung, H.Y. Jung, J.S. Suh, Sens. Actuators B 139 (2009) 425-428.
[26] N. Peng, Q. Zhang, C.L. Chow, O.K. Tan, N. Marzari, Nano Lett. 9 (2009) 1626.
[27] C.S. Huang, C.Y. Yeh, C.H. Yuan, B.R. Huang, C.H. Hsiao, Diam. Relat. Mat. 18 (2009) 461.
[28] C.S. Huang, B.R. Huang, C.H. Hsiao, C.Y. Yeh, C.C. Huang, Y.H. Jang, Diam. Relat. Mat. 17 (2008) 624.
[29] S. Sivaramakrishnan, R. Rajamani, C.S. Smith, Sens. Actuators B 132 (2008) 296.
[30] Z. Li, J. Li, X. Wu, S. Shuang, C. Dong, M.M.F. Choi, Sens. Actuatos B 139 (2009) 453.
[31] M. Momirlan, T.N. Veziroglu, Int. J. Hydrogen Energy 30 (2005) 795.
[32] A. Kolmakov, D.O. Klenov, Y. Lilach, S. Stemmer, M. Moskovits, Nano Lett. 5 (2005) 667-673.
[33] G.W. Crabtree, M.S. Dresselhaus, MRS Bull. 33 (2008) 421.
[34] V.R. Khalap, T. Sheps, A.A. Kane, P.G. Collins, Nano Lett. 10 (2010) 896.
[35] Z. Yong, L. Junhua, L. Xin, and Z. Changchun, Sens. Actuat. A 128 (2006) 278.
[36] Z. Yong, L. Junhua, L. Xin, and Z. Changchun, Sens. Actuat. A 125 (2005) 15.
[37] S. Kim, Sensors 6 (2006) 503.
[38] M. Baghgar, Y. Abdi, and E. Arzi, J. Phys. D: Appl. Phys. 42 (2009) 135502.
[39] I.M. Choi and S.Y. Woo, Appl. Phys. Lett. 87 (2005) 173104.
[40] S.J. Kim, J. Phys. D: Appl. Phys. 39 (2006) 3026.
[41] F.H. Wang, T.C. Lin, and S.D. Tzeng, J. Nanosci. Nanotechnol. 10 (2010) 4607.
[42] B.R. Huang, T.C. Lin, Y.K. Yang, S.D. Tzeng, Diamond Relat. Mater. 19 (2010) 158.
[43] K.S. Song, Y. Nakamura, Y. Sasaki, M. Degawa, J.H. Yang, and H. Kawarada, Anal. Chim. Acta 573 (2006) 3.
[44] G.M. da Silva, S.G. Lemos, L.A. Pocrifka, P.D. Marreto, and A.V. Rosario, E.C. Pereira, Anal. Chim. Acta 616 (2008) 36.
[45] P. Bergveld, IEEE Trans. Biomed. Eng. 17 (1970) 70.
[46] L.L. Chi, J.C. Chou, W.Y. Chung, T.P. Sun, and S.K. Hsiung, Mater. Chem. Phys. 63 (2000) 19.
[47] J.C. Chou and L.P. Liao, Jpn. J. Appl. Phys., Part 1 43 (2004) 61.
[48] J.C. Chou and J.L. Chiang, Sens. Actuators B 66 (2000)106.
[49] K. Yamamoto, G.Y. Shi, T.S. Zhou, F. Xu, M. Zhu, M. Liu, T. Kato, J.Y. Jin, L.T. Jin, Anal. Chim. Acta 480 (2003) 109.
[50] J.C. Chou, J.L. Chiang, and C.L. Wu, Jpn. J. Appl. Phys. 44 (2005)4838.

Chapter 2

[1] S. Iijiman, Nature 354 (1991) 56.
[2] R.G. Ding, G.Q. Lu, Z.F. Yan, M.A. Wilson, J. Nanosci. Nanotechnol. 1 (2001) 7.
[3] Q.H. Wang, A.A. Setlur, J.M. Lauerhaas, J.Y. Dai, E.W. Seelig, Appl. Phys. Lett. 72 (1998) 2912.
[4] J.L. Kwo, M. Yokoyama, W.C. Wang, F.Y. Chuang, I.N. Lin, Diam. Relat. Mater. 9 (2000) 1270.
[5] L.Wang,Z. Sun, T. Chen,W.Que, Solid State Electron. 50 (2006) 800.
[6] Y. Qin, M. Hu, H. Li, Z. Zhang, Q. Zou, Appl. Surf. Sci. 253 (2007) 4021.
[7] Schindler, J. Brill, N. Fruehauf, J.P. Novak, Z. Yaniv, Physica E 37 (2007) 119.
[8] Niu, E.K. Sickel, R. Hoch, D. Moy, H. Tennent, Appl. Phys. Lett. 70 (1997) 1480.
[9] J. Kong, N.R. Franklin, C. Zhou, M.G. Chapline, S. Peng, K. Cho, H. Dai, Science 287 (2000) 622.
[10] M. Hirakawa, S. Sonoda, C. Tanaka, H. Murakami, H. Yamakawa, Appl. Surf. Sci. 169-170 (2001) 662.
[11] R. L. Mills, The Grand Unified Theory of Classical Physics, Allotropes of Carbon, Chapter 17 (2).
[12] http://www.gkdidyouknow.com/.
[13] http://cnx.org/content/m22963/latest/.
[14] P. M. Ajayan, J.C. Charlier, A.G. Rinzler, PANS 96(25) (1999) 14199.
[15] N. Kuganathan, The Internet Journal of Nanotechnology 3 (2010) 500.
[16] http://vi.sualize.us/view/jmallos/41f2c692948116fdc42679783a6ea0fb/
[17] http://www.ks.uiuc.edu/Research/nanotube/
[18] K.B.K. Teo, C. Singh, M. Chhowalla, W.I. Milne, Encyclopedia of Nanoscience and Nanotechnology 1 (2003) 665.
[19] M.F. Yu, O. Lourie, M.J. Dyer, K. Moloni, T.F. Kelly, R.S. Ruoff, Science 287, (2000) 637.
[20] M.F. Yu, B.S. Files, S. Arepalli, R.S. Ruoff, Phys. Rev. Lett. 84 (2000) 5552.
[21] C. Weeks, P. Glatkowski, D. Britz, The Newsletter of Tools and Products in Micro and Nanotechnology 12 (2007) 1.
[22] S. Han, J. Ihm, Phys. Rev. B 61 (2000) 9986.
[23] K.F. Chen, K.C. Chen, Y.C. Jiang, L.Y. Jiang, Y.Y. Chang, M.C. Hsiao, L.H. Chan, Appl. Phys. Lett. 88 (2006) 193127.
[24] Z.F. Ren, Z.P. Huang, J.W. Xu, J.H. Wang, P. Bush, M.P. Siegal, P.N. Provencio, Science 282 (1998) 1105.
[25] L.M. Yu, C.C. Zhu, Appl. Surf. Sci. 255 (2009) 8359.
[26] Y. Qin, M. Hu, Appl. Surf. Sci. 255 (2009) 7618.
[27] F.G. Zeng, C.C. Zhu, W. Liu, X. Liu, Microelectron. J. 37 (2006) 49.
[28] Y.D. Lee, K.S. Lee, Y.H. Lee, B.K. Ju, Appl. Surf. Sci. 254 (2007) 513.
[29] Z.W. Pan, S.S. Xie, B.H. Chang, L.F. Sun, W.Y. Zhou, G. Wang, Chem. Phys. Lett. 299 (1999) 97.
[30] P.M. Ajayan, S. Iijina, Nature 361 (1993) 333.
[31] V. Sgobba and D.M. Guldi. J. Mater. Chem. 18 (2008) 153.
[32] Y. Ando, X. Zhao, T. Sugai, M. Kumar, Materials Today 7 (2004) 22.
[33] S.K. Hughes, R.C. Fry, J. Brady, Gases & Instrumentation™, Laser Ablation for Direct ICP and ICP-MS Analysis (2008).
[34] H.J. Lee, Yang D. Lee, S.I. Moon, W.S. Cho, Y.H. Lee, J.K. Kim, S.W. Hwang, B.K. Ju, Carbon 44 (2006) 2625.
[35] http://www.surrey.ac.uk/ati/activity/phd_projects/liquid_crystal_aligned_carbon_nanotube_transistors.htm
[36] http://www.taiwantrade.com.tw/giantektechnology-co/products-detail/en_US/461101/CNT-FED_%28Carbon_Nanotube_Field_Emission_Display%29%2C_18_inch_complete_CNT-Field_Emission_Display
[37] http://www.nanoma.eu/research.htm
[38] http://xinnanomaterials.com/Products_EN.html
[39] http://www.ubergizmo.com/2006/05/biosensors-built-like-spaghetti/
[40] R.W. Bogue, Nanotechnology 24 (2004) 253.
[41] G.K. Dimitrakakis, E.T. George, E. Froudakis, Nano Lett. 8 (2008) 3166.
[42] A.Z. Sadek, C. Zhang, Z. Hu, J.G. Partridge, D.G. McCulloch, W. Wlodarski, K. J. Kalantar-zadeh, Phys. Chem. C 114 (2010) 238.
[43] S. Ju, J.M. Lee, Y. Jung, E. Lee, W. Lee, S.J. Kim, Sens. Actuators B 146 (2010) 122.
[44] R. Ghasempour, S.Z. Mortazavi, A. Iraji zad, F. Rahimi, Int. J. Hydrog. Energy 35 (2010) 4445.
[45] S. Subodh, S.S. Sharma, K. Sumit, A. Shweta, M. Singh, Y.K. Vijay. Int. J. Hydrog. Energy 34 (2009) 8444.
[46] S. Subodh, K. Sumit, V.N. Singh, M. Singh, Y.K. Vijay, Int. J. Hydrog. Energy 36 (2011) 6343.
[47] S.M. Jung, H.Y. Jung, J.S. Suh, Sens. Actuators B 139 (2009) 425.
[48] N. Peng, Q. Zhang, C.L. Chow, O.K. Tan, N. Marzari, Nano Lett. 9 (2009) 1626.
[49] C.S. Huang, C.Y. Yeh, C.H. Yuan, B.R. Huang, C.H. Hsiao, Diam. Relat. Mat. 18 (2009) 461.
[50] C.S. Huang, B.R. Huang, C.H. Hsiao, C.Y. Yeh, C.C. Huang, Y.H. Jang, Diam. Relat. Mat. 17 (2008) 624.
[51] S. Sivaramakrishnan, R. Rajamani, C.S.Smith, Sens. Actuators B 132 (2008) 296.
[52] Z. Li, J. Li, X. Wu, S. Shuang, C. Dong, M.M.F Choi, Sens. Actuatos B 139 (2009) 453.
[53] M. Momirlan, T.N. Veziroglu, Int. J. Hydrogen Energy 30 (2005) 795.
[54] A. Kolmakov, D.O. Klenov, Y. Lilach, S. Stemmer, M. Moskovits, Nano Lett. 5 (2005) 667.
[55] G.W. Crabtree, M.S Dresselhaus, MRS Bull. 33 (2008) 421.
[56] K.D. Schierbaun, U.K. Kirner, J.F. Geiger, W. Gopel, Sens. Actuators B 4 (1991) 87.
[57] J. Zuo, C. Xu, X. Liu, C. Wang, C. Wang, Y. Hu, Y. Qian, J. Appl. Phys. 75 (1994) 1835.
[58] G. Sberveglieri (Ed.), Gas Sensors, Principles, Operation and Developments, Kluwer Academic Publishers, Dordrecht, (1992) 117.
[59] Y. Sun, H.H. Wang, M. Xia, J. Phys. Chem. C 112 (2008) 1250.
[60] I. Lundström, M.S. Shivaraman, C. Svensson, Surf. Sci. 64 (1977) 64 497.
[61] H. K. Henisch, Rectifying Semiconductor Contacts, (1957).
[62] A. Modi, N.Koratkar, E. Lass, B.Wei, P.M. Ajayan, Nature 424 (2003) 171.
[63] Z. Yong, L. Junhua, L. Xin, and Z. Changchun, Sens. Actuat. A 128 (2006) 278.
[64] Z. Yong, L. Junhua, L. Xin, and Z. Changchun, Sens. Actuat. A 125 (2005) 15.
[65] S. Kim, Sensors 6 (2006) 503.
[66] M. Baghgar, Y. Abdi, and E. Arzi, J. Phys. D: Appl. Phys. 42 (2009) 135502.
[67] I.M. Choi and S.Y. Woo, Appl. Phys. Lett. 87 (2005) 173104.
[68] S.J. Kim, J. Phys. D: Appl. Phys. 39 (2006) 3026.
[69] K.S. Song, Y. Nakamura, Y. Sasaki, M. Degawa, J.H. Yang, H. Kawarada, Anal. Chim. Acta 573-4 (2006) 3.
[70] G.M. da Silva, S.G. Lemos, L.A. Pocrifka, P.D. Marreto, A.V. Rosario, E.C. Pereira, Anal. Chim. Acta 616 (2008) 36.
[71] L.L. Chi, J.C. Chou, W.Y. Chung, T.P. Sun, S.K. Hsiung, Mater. Chem. Phys. 63 (2000) 19.
[72] J.C. Chou and L.P. Liao, Jpn. J. Appl. Phys. Part 1 61 (2004) 43.
[73] J.C. Chou and J.L. Chiang, Sens. Actuators B 66 (2000) 106.
[74] K. Yamamoto, G.Y. Shi, T.S. Zhou, F. Xu, M. Zhu, M. Liu, T. Kato, J.Y. Jin, L.T. Jin, Anal. Chim. Acta 480 (2003) 109.
[75] S.S. Jan, Y.C. Chen, J.C. Chou, C.C. Cheng, C.T. Lu, Jpn. J. Appl. Phys. 41 (2002) 942.
[76] H.K. Liao, J.C. Chou, W.Y. Chung, T.P. Sun, S.K. Hsiung, Sens. Actuators B 65 (2000) 23.
[77] C.L. Li, B.R. Huang, S. Chattopadhyay, K.H. Chen, L.C. Chen, Appl. Phys. Lett. 84 (2004) 2676.
[78] J.F. Hsu, B.R. Huang, C.S. Huang, H.L. Chen, Jpn. J. Appl. Phys. 44 (2005) 2626.
[79] C. A. Spindt, Surface Sci.. 266 (1992) 145.
[80] A. Inoue, H. Yamaguchi, T. Zhang ,T. Masumoto, Mater. Trans., JIM. 31 (1990) 2.
[81] A. Inoue and Y. Saotome, Metals 63 (1993) 51.
[82] A. Inoue, K. Ohtera, K. Kita, T. Masumoto, Jpn. J. Appl. Phys. 27 (1988) L1796.
[83] R. B. Schwarz and W. L. Johnson, Phys. Rev. Lett. 51 (1983) 415.
[84] S. Hata, K. Sato, and A. Shimokohbe, SPIE International Symposium on Micro-electronics and Micro-Electro-Mechanical Systems MICRO /MEMS'99 3892 (1999) 97.
[85] Y. Liu, S. Hata, K. Wada, A. Shimokohbe, Proceedings of the 14th IEEE International Conference on Micro Electro and Mechanical Systems; Interlaken, Switzerland (2001).
[86] P. Sharma, W. Zhang, K. Amiya, H. Kimura, A. Inoue, J. Nanosci. Nanotech. 5 (2005) 416.
[87] J. P. Chu, C. T. Liu, T. Mahalingam, S. F. Wang, M. J. O’Keefe, B. Johnson, C. H. Kuo, Phys. Rev. B, 69 (2004) 113410.
[88] J. P. Chu, C. T. Lo, Y. K. Fang, B. S. Han, Appl. Phys. Lett. 88 (2006) 012510.
[89] 朱瑾,江圳陵,林俊輝,林於隆,中國材料科學學會,民國九十四年年會論文集,2005/11。
[90] Z. F. Li, W. S. Lai, and B. X. Liu, Appl. Phys. Lett. 77 (2000) 3920.

Chapter 3

[1] Y.D. Lee, K.S. Lee, Y.H. Lee, B.K. Ju, Appl. Surf. Sci. 254 (2007) 513.
[2] M.L.D.L. Chapelle, S. Lefrant, C. Journet, W. Maser, P. Bernier, Carbon 36 (1998) 705.
[3] K.F.Chen, K.C. Chen, Y.C. Jiang, L.Y. Jiang, Y.Y. Chang, M.C. Hsiao, L.H. Chan, Appl. Phys. Lett. 88 (2006) 193127.
[4] P.C. Eklund, J.M.Holden, R.A. Jishi, Carbon 33 (1995) 959.
[5] H. Nishihara, Q.H. Yang, P.X. Hou, M. Unno, S. Yamauchi, R. Saito, J.I. Paredes, A. Martınez-Alonso, J.M.D. Tascon, Y. Sato, M. Terauchi, T. Kyotani, Carbon 47 (2009) 1220.
[6] R. Ghasempour, S.Z. Mortazavi, A. Irajizad, F. Rahimi, Int. J. Hydrog. Energy 35 (2010) 4445.
[7] P.G. Su, Y.S. Chuang, Sens. Actuators B 145 (2010) 521.
[8] S. Mubeen, T. Zhang, B. Yoo, M.A. Deshusses, N.V. Myung, J. Phys. Chem. C 111(2007) 6321.
[9] Y. Sun, H.H. Wang, M. Xia, J. Phys. Chem. C 112 (2008) 1250.
[10] I. Lundström, M. S. Shivaraman, C. Svensson, Surf. Sci. 64 (1977) 497.
[11] T. Yamada, Appl. Phys. Lett. 88 (2006) 83106.
[12] A. Salomonsson, M. Eriksson, H. Dannetun, J. Appl. Phys. 98 (2005) 14505.
[13] J. Appenzeller, M. Radosavljevic, J. Knoch, Ph. Avouris, Phys. Rev. Lett. 92 (2004) 48301.
[14] J. Kong, M.G. Chapline, H. Dai, Adv. Mater. 13 (2001) 1384.
[15] X.Q. Zeng, M.L. Latimer, Z.L. Xiao, S. Panuganti, U. Welp, W.K. Kwok, T. Xu, Nano Lett. 11 (2011) 262.

Chapter 4

[1] B.R. Huang, T.C .Lin, Y.K. Yang, S.D. Tzeng, Diam. Relat. Mat. 19 (2010) 158.
[2] F. Wang, S. Arai, M. Endo, Carbon 43 (2005) 1716.
[3] K.F. Chen, K.C. Chen, Y.C. Jiang, L.Y. Jiang, Y.Y. Chang, M.C. Hsiao, L.H. Chan, Appl. Phys. Lett. 88 (2006) 193127.
[4] P.C. Eklund, J.M. Holden, R.A. Jishi, Carbon 33 (1995) 959.
[5] H. Nishihara, Q.H. Yang, P.X. Hou, M. Unno, S. Yamauchi, R. Saito, J.I. Paredes, A. Martínez-Alonso, J.M.D. Tascón, Y. Sato, M. Terauchi, T. Kyotani, Carbon 47 (2009) 1220.
[6] Q.H. Yang, P.X. Hou, M. Unno, S. Yamauchi, R. Saito, T. Kyotani, Nano Lett. 5 (2005) 2465.
[7] A.C. Ferrari, J. Robertson, J. Phys. Rev. B 61 (2000) 14095.
[8] K.N. Kudin, B. Ozbas, H.C. Schniepp, R.K. Prud’homme, I.A. Aksay, R. Car, Nano Lett. 8 (2008) 36.
[9] T.S. Sreeprasad, A.K. Samal, T. Pradeep, J. Phys. Chem. C 113 (2009) 1727.
[10] L.G. Cancado, M.A. Pimenta, B.R.A. Neves, M.S.S. Dantas, A. Jorio, Phys. Rev. Lett. (93) 2004 247401.
[11] D.R. Kauffman, A. Star, Nano Lett. 7 (2007) 1863.
[12] T. Yamada, Appl. Phys. Lett. 88 (2006) 083106.
[13] A. Salomonsson, M. Eriksson, H. Dannetun, J. Appl. Phys. 98 (2005) 014505.
Chapter 5

[1] A. Sharma, S. Kumar, B. Tripathi, M. Singh, Y. K. Vijay, Int. J. Hydrogen Energ. 34 (2009) 3977.
[2] H. Ahmadvand, H. Salamati, P. Kameli, F.S. Razavi, J. Supercond. Nov. Magn. 23 (2010) 1467.
[3] L. Barrientos, S.R. Llamazarez, J. Merchani, P. Jara, N. Yutronic, V. Lavayen, J. Chil. Chem. Soc. 54 (2009) 391.
[4] M.L.D.L. Chapelle, S. Lefrant, C. Journet, W. Maser, P. Bernier, Carbon 36 (1998) 705.
[5] K.F. Chen, K.C. Chen, Y.C. Jiang, L.Y. Jiang, Y.Y. Chang, M.C. Hsiao, L.H. Chan, Appl. Phys. Lett. 88 (2006) 193127.
[6] P.C. Eklund, J.M. Holden, R.A. Jishi, Carbon 33 (1995) 959.
[7] H. Nishihara, Q.H. Yang, P.X. Hou, M. Unno, S. Yamauchi, R. Saito, J.I. Paredes, A. Martınez-Alonso, J.M.D. Tascon, Y. Sato, M. Terauchi, T. Kyotani, Carbon 47 (2009) 1220.
[8] D.E. Yates, S. Levine, T.W. Healey, J. Chem. Soc. 70 (1974) 1807.
[9] L.L. Chi, J.C. Chou, W.Y. Chung, T.P. Sun, S.K. Hsiung, Mater. Chem. Phys. 63 (2000) 19.
[10] W. Treichel, M. Ullrich, H. Voigt, M. Appel, R. Ferretti, Fresenius’ J. Anal. Chem. 349 (1994) 385.
[11] A. Denisenko, A. Aleksov, E. Kohn, Diamond Relat. Mater. 10 (2001) 667.
[12] Y. Cheng, P. Xiong, C.S Yun, G.F. Strouse, J.P. Zheng, R.S. Yang, Z.L. Wang, Nano Lett. 8 (2008) 4179.

Chapter 6
[1] W. Zhang, Z.H. Xi, G.M. Zhang, S. Wang, M.S. Wang, J.Y. Wang, and Z.Q. Xue, Appl. Phys., A mater. Sci. Process. 86 (2007) 171.
[2] S.C Lim, Y.C. Choi, H.J. Jeong, Y.M. Shin, K.H. An, D.J. Bae, Y.H. Lee, N.S. Lee, and J.M. Kim, Adv. Mater. 13 (2001) 1563.
[3] P.C. Eklund, J.M. Holden, R.A. Jishi, Carbon 33 (1995) 959.
[4] M. Sveningsson, R.E. Morjan, O.A. Nerushev, Y. Sato, J. Bäckström, E.E.B. Campbell, F. Rohmund, Appl. Phys. A 73 (2001) 409.
[5] K.F. Chen, K.C. Chen, Y.C. Jiang, L.Y. Jiang, Y.Y. Chang, M.C. Hsiao, L.H. Chan, Appl. Phys. Lett. 88 (2006) 193127.
[6] S. Han, J. Ihm, Phys. Rev. B 61 (2000) 9986.
[7] Y. Hayashi, T. tokunaga, S. Toh, W.J. Moon, and K. Kaneko, Diamond Relat. Mater. 14 (2005) 790.
[8] K.N. Kudin, B. Ozbas, H.C. Schniepp, R.K. Prud’homme, I.A. Aksay, and R. Car, Nano Lett. 8 (2008) 36.
[9] T.S. Sreeprasad, A.K. Samal, and T. Pradeep, J. Phys. Chem. C 113 (2009) 1727.
Chapter 7
[1] S.M. Jung, J. Hahn, H.Y. Jung, J.S. Suh, Nano Lett. 6 (2006) 1569.
[2] J.L. Kwo, M. Yokoyama, W.C. Wang, F.Y. Chuang, I.N. Lin, Diamond Relat. Mater. 9 (2000) 1270.
[3] S.J. Oh, J. Zhang, Y. Cheng, H. Shimoda, O. Zhou, Appl. Phys. Lett. 84 (2004) 3738.
[4] P.C. Eklund, J.M. Holden, R.A. Jishi, Carbon 33 (1995) 959.
[5] M. Sveningsson, R.E. Morjan, O.A. Nerushev, Y. Sato, J. Bäckström, E.E.B. Campbell, F. Rohmund, Appl. Phys. A 73 (2001) 409.
[6] K.F. Chen, K.C. Chen, Y.C. Jiang, L.Y. Jiang, Y.Y. Chang, M.C. Hsiao, L.H. Chan, Appl. Phys. Lett. 88 (2006) 193127.
[7] S. Han, J. Ihm, Phys. Rev. B 61 (2000) 9986.
[8] H.J. Lim, Y.C. Choi, H.J. Jeong, Y.M. Shin, K.H. An, D.J. Bae, et al., Adv. Mater. 13 (2001) 1563.
Chapter 8
[1] J.P. Chu, C.T. Liu, T. Mahalingam, S.F. Wang, M.J. O’Keefe, B. Johnson, C.H. Kuo, Phys. Rev. B 69(11) 2004 113410.
[2] B.R. Huang, T.C. Lin, Y.K. Yang, S.D. Tzeng. Diam. Relat. Mat. 19(2–3) (2010) 158.
[3] A. Sharma, S. Kumar, B. Tripathi, M. Singh, Y.K. Vijay, Int. J. Hydrogen Energ. 34(9) (2009) 3977.
[4] T. Onoea, S. Iwamotoa, M. Inoue, Catal. Commun. 8(4) (2007) 701.
[5] H. Ahmadvand, H. Salamati, P. Kameli, F.S. Razavi, J. Supercond. Nov. Magn. 23(8) (2010) 1467.
[6] L. Barrientos, S.R. Llamazarez, J. Merchani, P. Jara, N. Yutronic, V. Lavayen, J. Chil. Chem. Soc. 54(4) (2009) 391.
[7] W. Zhang, Z.H. Xi, G.M. Zhang, S. Wang, M.S. Wang, J.Y. Wang, et al. Appl. Phys. A–Mater. 86(2) (2007) 171.
[8] S.J. Oh, J. Zhang, Y. Cheng, H. Shimoda, O. Zhou, Appl. Phys. Lett. 84(19) (2004) 3738.
[9] S.M. Jung, J. Hahn, H.Y. Jung, J.S. Suh, Nano Lett. 6(7) (2006) 1569.
[10] S.M. Jung, H.Y. Jung, J.S. Suh, Carbon 45(15) 2007 2917.

QR CODE