簡易檢索 / 詳目顯示

研究生: 詹惠雯
Hui-Wen Chan
論文名稱: 石墨烯堆疊於不同結構矽基板之場發射特性研究
Graphene stacks on silicon-based templates for field emission studies
指導教授: 黃柏仁
Bohr-Ran Huang
口試委員: 莊敏宏
Miin-Horng Juang
楊文祿
Wen-Luh Yang
學位類別: 碩士
Master
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2013
畢業學年度: 101
語文別: 中文
論文頁數: 89
中文關鍵詞: 石墨烯場發射化學氣相沉積
外文關鍵詞: Graphene, Field emission, Chemical Vapor Deposition
相關次數: 點閱:283下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

利用銅箔以化學氣相沉積的方法成長石墨烯,利用濕式轉移方式將石墨烯轉移至平面矽基板、金字塔結構矽基板以及矽奈米線基板上。在平面矽基板上轉移不同層數石墨烯場發射。量測不同層數石墨烯的功函數。石墨烯的邊緣及缺陷會增強其場發射特性。因為金字塔結構具有疏水性且形貌高低特性會產生邊緣及缺陷,於是轉移至金字塔結構矽基板,探討轉移不同層數於此會有不同性質和場發射特性。但金字塔結構具有斜面,會造成電子間的干擾,於是將不同層之石墨烯轉移在矽奈米線基板上,奈米線尖端與尖端間具有縫隙,於是會使石墨烯產生邊緣與缺陷,本論文發現三層石墨烯在矽奈米線上之場發射為最佳(起始電場為3.02 V/μm),於是取其樣品進行後處理以增進場發射特性。
本論文以氫電漿進行後處理,探討不同功率對三層石墨烯/矽奈米線之影響,使用800W、900W及1000W氫電漿轟擊石墨烯,結果以900W具有良好的場發射特性(起始電場為2.22 V/μm)。
並探討石墨烯於不同基板其場發射穩定性。石墨烯由於是浮貼於矽奈米線上,場發射穩定性最差,石墨烯在平面矽基板及金字塔結構矽基板比較,後者的穩定為最佳,其原因為在金字塔結構上具有較多的有效電子發射點,所以會比在平面矽基板的場發射穩定性。


Graphene (G) layer was synthesized on the Cu foils by the thermal chemical vapor deposition technique (T-CVD). It stacks onto the different silicon templates (planar silicon wafer, pyramid substrate, and silicon nanowires) to form the bilayer structure for field emission cathodes. The surface coverage, edges, and defects of the bilayer structure are increased as the graphene layer increase. On the other hand, the work functions are decreased with more graphene layers. Moreover, these are beneficial for the field emission properties.
The G layer was formed on the SiNW template due to the voids of the SiNW surface to produce the more edges. The surface morphology of the 3-layer G/ SiNW shows the higher surface coverage than other G layers on SiNW templates. It is found that the FE properties of 3-layers G/SiNW cathodes possess a lower turn-on electric field and higher current density. Nevertheless, the 3-layers G/pyramid field emission cathode shows the longer stability than 3-layers G/SiNW cathodes, since the G on the SiNW were burned easily for field emission measurement.

中文摘要 Ⅰ 英文摘要 Ⅱ 致謝 Ⅲ 目錄 Ⅳ 圖目錄 Ⅶ 表目錄 XI 第一章 緒論 1 1-1 前言 1 1-2 研究動機 2 第二章 文獻回顧 3 2-1 石墨烯的結構與性質 3 2-2 石墨烯成長機制與製備方法 6 2-2.1 機械剝離法 7 2-2.2 氧化石墨還原法 8 2-2.3 碳化矽磊晶成長法 9 2-2.4 化學氣相沉積法 10 2-3 製備矽奈米線之機制 12 2-4 製備金字塔結構之機制 17 2-5 電子場發射原理 19 第三章 實驗方法 21 3-1 實驗設計與流程 21 3-2 石墨烯之製備 21 3-2.1 銅箔前處理 22 3-2.2 石墨烯成長參數 23 3-3 矽基結構之製造 25 3-3.1 矽基板前處理 25 3-3.2 金字塔結構之製備 26 3-3.3 矽奈米線之製備 27 3-4 石墨烯之轉移 28 3-4.1 石墨烯轉移之基本步驟 28 3-4.2 不同層數於矽平面基板之轉移 30 3-4.3 不同層數於金字塔結構基板之轉移 31 3-4.4 不同層數於矽奈米線基板之轉移 33 3-5 石墨烯之氫電漿後處理 35 3-6 分析方法及儀器介紹 36 3-6.1 掃描式電子顯微鏡(FE-SEM) 36 3-6.2 顯微拉曼光譜儀(Micro-Raman) 36 3-6.3 X射線光電子能譜儀(XPS) 37 3-6.4 光學顯微鏡(Optical Microscopy) 38 3-6.5 功函數量測儀(AC-2) 38 3-6.6 傅立葉紅外線光譜儀(FTIR) 39 第四章 結果與討論 40 4-1石墨烯之製備 40 4-2石墨烯與平面矽基板之製作及特性分析 44 4-2.1 不同層數石墨烯於平面矽基板之分析 44 4-2.2 電子場發射特性 47 4-3 石墨烯與金字塔結構矽基板之製作及特性分析 51 4-3.1 不同層數石墨烯於金字塔結構之分析 51 4-3.2 電子場發射特性 57 4-4 石墨烯與矽奈米線基板之製作及特性分析 61 4-4.1 不同層數石墨烯於矽奈米線結構之分析 61 4-4.2 電子場發射特性 68 4-4.3 電漿後處理於石墨烯之影響 72 4-5 不同基板之場發射穩定度 80 第五章 結論與未來展望 81 5-1 結論 81 5-2 未來展望 83 參考文獻 84

[1] A. K. Geim, K. S. Novoselov. The rise of graphene. Nature Mater, 6, 183 (2007).
[2] http://en.wikipedia.org/wiki/Graphen.
[3] A. A. Balandin, S. Ghosh, W. Bao, I. Calizo, D. Teweldebrhan, F. Miao, C. N. Lau
.Superior thermal; conductivity of single-layer graphene. Nano Lett, 8,902-907(2008).
[4] K. I. Bolotin, K. J. Sikes, Z. Jiang, M. Klima, G. Fudenberg, J. Hone, P. Kim,
H.L. Stormer. Ultrahigh electron mobility in suspended grapheme. Solid State Commun, 146, 351-355 (2008).
[5] B. Partoens, F. M. Peeters. From graphene to graphite: electronic structure around the k point. Physics Review B, 74, 075404(2006).
[6] K. S. Novoselov, A. K. Geim, S. V. Morozov, D.J iang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, A. A. firsov. Electric Field Effect in Atomically Thin Carbon Films. Science, 306, 666-669(2004).
[7] P. Blake, E. W. Hill, A. H. Castro Neto, K. S Novoselov, D. Jiang, R. Yang, T. J. Booth, A.K Geim. Making grapheme visible. Appl.Phys.Lett, 91, 063124(2007)
[8] X. Li, G. Zhang, X. Bai, X .Sun, X. Wang, E. Wang, H. Dai. Highly conducting grapheme sheets and Langmuir-Blodgett films. Nature Nanotech, 3, 538-542(2008).
[9] G. Eda, G. Fanchini, M. Chhowalla . Large-area ultrathin film of reduced grapheme oxide as a transparent and flexible electronic material. Nature Nanotech, 3, 270-274(2008).
[10] C. Berger, Z. Song, T. Li, X. Li, A. Y. Ogbazghi, R. Feng, Z. Dai, A. N. Marchenkov, E. H.Conrad, P. N. First, W. A.de Heer. Ultrathin Epitaxial Graphite:2D Electron Gas Properties and a Route toward Graphene-based Nanoelectronics. J.Phys.Chem.B,108, 19912(2004).
[11] K. V. Emtsev, A. Bostwick, K. Horn, J. Jobet, G. L. Kellogg, L. Ley, J .L. McChesney, T. Ohta, S. A. Reshanov, J. Rohrl, E. Rotenberg, A. K. Schmid, D. Waldmann, H. B.Weber, T. Seyller. Towards Wafer-Size Graphene Layers by Atmospheric Pressure Geaphitization of silicon Carbide. Natuer Materials, 8, 203(2009).
[12] Peter sutter. Epitaxial Graphene: How Silicon Leaves The Scene . Nature Materials, 8, 171(2009).
[13] P. R. Somani, S. P. Somani, M.Umeno. Planer nano-graphenes from camphor by ful6u CVD. Chemical Physics Letters, 430, 56-59(2006).
[14] Q.Yu, J. Lian, S. Siriponglert, H. Li, Y. P. Chen, S. S. Pei. Graphene segregated on Ni surfaces and transferred to insulators. Appl.Phys.Lett. 93, 113103(2008)
[15] X. Li, W. Cai, J. An, S. Kim, J. Nah, D. Yang, R. Piner, A. Velamakanni, I. Jung, E. Tutuc, S. K. Banerjee, L. Colombo, R. S. Ruoff .Large-Area Synthesis of High-Quality and Uniform Graphene Films on Copper Foils. Science 324, 1312-1314(2009).
[16] J. Westwater, D. P. Gosain, S. Tomiya, S. Usui, H.Ruda. Growth of silicon nanowires via gold/silane vapor-liquid-solid reaction. Journal of Vacuum Science&Technology B, 15, 554-557(1997).
[17] A. M. Morales, C. M. Lieber. A laser ablation method for the synthesis of crystalline semiconductor nanowires. Science, 279, 208-21(1998).
[18] K. Peng, J. Zhu. Morphological selection of electroless metal deposits on silicon in aqueous fluoride solution. Electrochimica Acta, 49, 2563-2568(2004).
[19] T. Qiu, P. K. Chu. Self-selective electroless plating: An approach for fabrication of functional 1D,nanomaterials. Materials Science and Engineering:R: Reports, 61, 59-77(2008).
[20] H. Park, S. Kwon, J. S. Lee, H. J. Jim, S. Yoon, D. Kim. Improvement on surface texturing of single crystalline silicon for solar cell by saw-damage etching using an acidic solution. Solar Energy Materials and Solar Cells, 93, 1773-1778(2009).
[21] A. K. Chu, J. S. Wang, Z. Y. Tsai, C. K. Lee. A simple and cost-effective approach for fabricating pyramid on crystalline silicon wafers. Solar Energy Materials and Solar Cell, 93, 1276-1280(2009).
[22] I. Zubel, M. Kramkowska. The effect of isopropyl alcohol on etching rate and roughness of (100) Si surface etched in KOH and TMAH solutions. Sensors and Actuators a-Physical, 93, 138-147(2001).
[23] H. Lv, H.Shen, Y. Jiang, C. Gao, H. Zhao, J. Yuan. Porous-pyramids structures silicon surface with low reflectance over a broad band by electrochemical etching. Applied Surface Science, 258, 5451-5454(2012).
[24] Y . Cao, A. Liu, H. Li, Y. Liu, F. Qiao, Z. Hu, Y. Sang. Fabrication of silicon wafer with ultra low reflectance by chemical etching method. Applied Surface Science, 257, 7411-7414(2011).
[25] X. Li ,B. K. Tay, P. Miele, A. Brioude, D. Cornu. Fabrication of silicon pyramid/nanowire binary structure with super hydrophobicity. Applied Surface Science, 255, 7147-7152(2009).
[26] K. Q. Peng, J. J.Hu, Y.J .Yan, Y. Wu, H. Fang, Y. Xu, S. T. Lee, J. ZhuAdv. Fabrication of single crystalline silicon nanowires by scratching a silicon surface with catalytic metal particles. Funct.Mater, 16, 387(2006).
[27] X. Feng, X. Qi, J. Li, L. Yang, M. Qiu, J. Yin, F. Lu, J. Zhong. Preparation, structure and photo-catalytic performances of hybrid Bi2SiO5 modified Si nanowire arrays. Applied Surface Science 257, 5571–5575(2011).
[28] H. Fang, X. Li, S. Song, Y. Xu, and J. Zhu. Fabrication of slantingly-aligned silicon nanowire arrays for solar cell applications. Nanotechnology, 19, 255703(2008).
[29] H. Seidel, L. Csepregi, A. Heuberger, H. Baumg Srtel. Anisotropic Etching of Crystalline Silicon in Alkaline Solutions. J.Electrochem, 37, 3612-3626(1990).
[30] G. T. A. Kovacs, N. I. Maluf, K. E. Petersen. Bulk micromachining of silicon. IEEE, 86, 1536-1551(1998).
[31] S. M. Sze. Semiconductor Device Physics and Technoligy,2nd edition, John Wiley & Sons. Inc.,New York(1981).
[32] J. L. Gole, J. D. Stout, W. L. Rauch, Z. L. Wang. Direct synthesis of silicon nanowires, silica nanospheres, and wire-like nanosphere agglomerates. Applied Physics Letter, 76, 2346(2000).
[33] K. Peng J. Zhu. Morphological selection of electroless metal deposits on silicon in aqueous fluoride solution. Electrochimica Acta, 49, 2563-2568(2004).
[34] X. Li, W. Cai, L. Colombo, R. S. Ruoff. Evolution of Graphene Growth on Ni and Cu by Carbon Isotope Labeling. Nano. Lett, 9, 4268-4272(2009).
[35] X. Li, Y. Zhu, W. Cai, M. Borysiak, B. Han, D. Chen, R. D. Piner, L. Colombo, R. S. Ruoff . Transfer of Large-Area Graphene Films for High-Performance Transparent Conductive Electrodes. Nano Lett., 9, 12(2009)
[36] Richard L. McCreery. Raman Spectroscopy for Chemical Analysis ,John Wiley and Sons. NY, 1-5(2000)
[37]http://www.doganak.com/index.php?option=com_content&view=category&id=114&Itemid=292&lang=en
[38] 彭鋐瑀. 以碳化矽熱裂解法與化學氣相沉積法製備石墨烯的製程與特性研究. (2008)
[39] C. Mattevi. A review of chemical vapour deposition of graphene on copper. Journal of Materials Chemistry, 21, 3324(2011)
[40] X. Li, W. Cai, J. An, S. Kim, J. Nah, D. Yang, R. Piner, A. Velamakanni, I. Jung, E. Tutuc, S. K. Banerjee, L, Colombo, R. S. Ruoff. Large-area synthesis of high-quality and uniform graphene films on copper foils. Science, 324, 1312(2009).
[41] X. Fan, Z. Shen, A. Q. Liuc, Jer-Lai Kuo. Band gap opening of graphene by doping small boron nitride domains. Nanoscale, 4, 2157-2165(2012).
[42] Barone, V., Hod, O., and Scuseria, G. E. Electronic Structure and Stability of Semiconducting Graphene Nanoribbons. Nano Lett, 6 (12), 2748(2006).
[43] S. Sato, N. Harada, D. Kondo, M. Ohfuchi. Graphene—Novel Material for Nanoelectronics. Sci. Tech. J, 46(1), 103–110(2010)
[44] W. Wu, Z. Liu, L. A. Jauregui, Q. Yu, R. Pillai, H. Cao, J. Bao, Y. P. Chen, S. S. Pei. Wafer-scale synthesis of graphene by chemical vapor deposition and its application in hydrogen sensing. Sensors and Actuators B ,150, 296–300 (2010).
[45] C. Kuang, Y. Ou, Y. Bie, Q. Zhao, D. Yu. Well-aligned garphene arrays for emission displays. Appl.Phys.Lett. 98, 263104(2011).
[46] M. Qian, T. Feng, H. Ding, L. F. Lin, H. B. Li, Y. W. Chen, Z. Su, Nanotechnology, 20, 425702(2009).
[47] D. A. Malesevic, R. Kemps, A. Vanhulsel, M. P. Chowdhury, A. Volodin, C. Van Haesendonck,J.Appl.Phys.104,084301(2008).
[48] S. Pandey, P. Rai, S. Patole, F. Gunes, G. D. Kwon, J. B. Yoo, P. N, S. Arepalli. Improved electron field emission from morphologically disordered monolayer graphene. APPLIED PHYSICS LETTERS,100, 043104 (2012)
[49] K. S. Hazra, N. A. Koratkar, D. S. Misra. Improved field emission from multiwall carbon nanotubes with nano-size defects produced by ultra-low energy ion bombardment. Carbon ,49, 14, 4760–4766( 2011).
[50] L. Jiang, T. Yang. Controlled Synthesis of Large-Scale, Uniform, Vertically Standing Graphene for High-Performance Field Emitters. Advanced Materials, 25, 2, 292 (2013).
[51] J. Liu, B. Zeng, Z. Wu, J. Zhu, X.C. Liu. Improved field emission property of graphene paper by plasma treatment. Appl. Phys. Lett. 97, 033109 (2010).
[52] http://www.ngmchina.com.cn/web/?action-viewnews-itemid-167352

無法下載圖示 全文公開日期 2018/07/26 (校內網路)
全文公開日期 本全文未授權公開 (校外網路)
全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
QR CODE