簡易檢索 / 詳目顯示

研究生: 張佑維
Yu-wei Chang
論文名稱: 變動步階擾動觀察法之太陽能最大功率追蹤技術之研製
Research on the Variable Step-Size Perturb and Observe Maximum Power Point Tracking Technology for a Photovoltaic System
指導教授: 劉益華
Yi-hua Liu
口試委員: 羅有綱
Yu-kang Lo
王順忠
Shun-chung Wang
郭見隆
Jian-long Kuo
學位類別: 碩士
Master
系所名稱: 電資學院 - 電機工程系
Department of Electrical Engineering
論文出版年: 2011
畢業學年度: 99
語文別: 中文
論文頁數: 67
中文關鍵詞: 最大功率追蹤擾動觀察法變動步階式擾動觀察法
外文關鍵詞: MPPT, P&O algorithms, Variable Step-Size P&O
相關次數: 點閱:212下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

太陽能因具有環保和取之不盡用之不竭的特點,是非常重要的再
生能源之一。而減少太陽能電池的體積、降低價格和增加轉換效率已
成為其得以商品化的重要因素。造成太陽能電池轉換效率過低的原因
在於在不同的太陽照度與環境溫度下,其輸出電壓及電流是呈現非線
性的特性。因此,需要藉由太陽能最大功率追蹤技術(MPPT)的快
速響應來使太陽能電池在任何環境下皆可以產生最大的功率輸出。
傳統擾動觀察法之主要缺點為會在最大功率點附近來回震盪和
其響應速度會因震盪而變慢。以固定的擾動值來說,在穩態下的震盪
情形會與擾動值的大小成正比。較大的擾動值追蹤速度較快但會造成
較高的震盪情形,相反地,較小的擾動值雖有較小震盪卻使追蹤速度
變慢。為了解決此問題,本文提出了變動步階式之擾動觀察法,
相較於傳統固定步階式擾動觀察法,所提出之變動步階式擾動觀
察法可提升暫態時追蹤速度和穩態時的輸出效能。所提出之太陽能最
大功率追蹤系統是由升壓式轉換器和微處理器dsPIC 所組成,經由不
同操作條件下之實驗結果,證明了所提出的方法具由可行性且性能也
優於傳統方法。


Photovoltaic (PV) energy is one of the most important renewable
energy sources since it is clean, free and inexhaustible. For the
commercialization of PV energy, the reduction of the cost and size, and
the improvement of conversion efficiency have become important
concerns. The main reason for the low conversion efficiency of the PV
modules are the non-linear voltage-current (V-I) characteristics, which
depends on the solar insolation and panel temperature. In order to
enhance the output power, a maximum power point tracking (MPPT)
technique with quick response and accurate tracking capability is
required.
Conventional Perturb and Observe (P&O) techniques suffer from
several disadvantages such as sustained oscillation around the
maximum power point and fast tracking versus oscillation tradeoffs.
For fixed perturb values, the steady-state oscillations are proportional to
the step size. The larger step size causes the higher oscillation. On the
other hand, the smaller step size results in the slower response. To
overcome this problem, a variable step size P&O method is proposed in
this thesis. By using the deviation of power (P) of the recent iteration,
the required control variable (duty cycle variance) can be deduced. In
this thesis, the power stage of the PV system is constructed by the boost
converter and the Microcontroller dsPIC.
Comparing to the conventional fixed step size P&O method, the
experimental results show that the proposed system can improve the
tracking speed and the steady state performance of the MPPT
III
comparing to conventional fixed-step perturb and observe (P&O)
method.

摘要 ..................................................................................................... I Abstract .............................................................................................. II 誌謝 .................................................................................................. IV 目錄 .................................................................................................... V 圖目錄 ............................................................................................ VIII 表目錄 ................................................................................................ X 第一章 緒論 ......................................................................................1 1.1 前言...................................................................................... 1 1.2 研究動機與目的 ................................................................. 3 1.3 論文大綱介紹 ..................................................................... 3 第二章 太陽能電池介紹 ..................................................................5 2.1 太陽能電池簡介 ................................................................. 5 2.2 太陽能電池原理及種類 ..................................................... 6 2.3 太陽能電池電氣特性 ......................................................... 9 第三章 太陽能最大功率追蹤技術 ................................................13 3.1 最大功率追蹤技術簡介 ................................................... 13 3.2 最大功率追蹤技術種類 ................................................... 13 3.2.1 開路電壓法 ............................................................ 13 3.2.2 短路電流法 ............................................................. 14 3.2.3 電壓回授法 ............................................................. 14 VI 3.2.4 功率回授法 ............................................................. 15 3.2.5 增量電導法 ............................................................ 16 3.2.6 直線近似法 ............................................................ 18 3.2.8 各種演算法之比較 ................................................ 20 第四章 太陽能最大功率追蹤系統之硬體架構 ............................22 4.1 升壓式轉換器介紹 ........................................................... 22 4.2 升壓式轉換器原理 ........................................................... 23 4.2.1 開關導通階段 ........................................................ 24 4.2.2 開關截止階段 ........................................................ 24 4.3 升壓式轉換器元件設計 ................................................... 26 4.3.1 電感器設計 ............................................................ 27 4.3.2 輸出電容器設計 .................................................... 28 4.3.3 切換開關設計 ........................................................ 29 4.3.4 電路參數設計 ......................................................... 30 第五章 PV MPPT 系統之韌體架構 ..............................................32 5.1 微處理器dsPIC30F2020 簡介 ......................................... 32 5.2 數位濾波器(Digital Filter)........................................... 36 5.2.1 濾波器簡介 .................................................................... 36 5.2.2 本文使用之數位濾波器設計 ................................ 37 5.2.3 數位濾波器程式流程圖 ........................................ 39 VII 5.3 變動步階式擾動觀察法 ................................................... 41 5.3.1 兩段式步階擾動觀察法 ........................................ 41 5.3.2 變動步階式擾動觀察法(ΔP 對應ΔI 法) .............. 42 5.3.3 變動步階式擾動觀察法(ΔP 對應ΔV 法) ............ 44 5.4 本文所使用之變動步階式擾動觀察法設計 ................... 45 5.5 變動步階式擾動觀察法比較表 ....................................... 47 5.6 本文所實現之擾動觀察法說明 ....................................... 47 5.6.1 固定步階式擾動觀察法設計流程圖 .................... 48 5.6.2 變動步階式擾動觀察法設計設計流程 ................ 50 第六章 實驗結果 ............................................................................53 6.1 實驗環境介紹 ................................................................... 53 6.2 太陽能模擬機E4361A 介紹 ............................................ 54 6.3 固定步階式擾動觀察法實驗波形 ................................... 55 6.4 變動步階式擾動觀察法實驗波形 ................................... 58 6.5 實驗結果比較 ................................................................... 60 第七章 結論與未來展望 ................................................................62 7.1 結論.................................................................................... 62 7.2 未來展望 ........................................................................... 62 參考文獻 ...........................................................................................64

[1] Emad M. Ahmed, Masahito Shoyama, “Highly efficient
variable-step-size maximum power point tracker for PV systems,”
Electrical and Electronics Engineering (ISEEE), 2010 3rd
International Symposium, pp.112-117, 2010.
[2] Emad M. Ahmed, Masahito Shoyama, “Single variable based
variable step size maximum power point tracker for stand-alone
battery storage PV systems,” Industrial Technology (ICIT), 2011
IEEE International Conference, pp.210-216, 2011.
[3] Ahmad Al-Diab and Constantinos Sourkounis, “Variable step size
P&O MPPT algorithm for PV systems,” Communications and
Information Technologies, 2006. ISCIT '06. International
Symposium, pp.212-215, 2006.
[4] Nicola Femia, Giovanni Petrone, Giovanni Spagnuolo and Massimo
Vitelli, “Optimization of perturb and observe maximum power point
tracking method,” Power Electronics, IEEE Transactions on
Volume: 20, Issue: 4, pp.963-973, 2005.
[5] 振芫禛,「太陽能最大功率追蹤器之研究」,大同大學電機工程
研究所碩士論文,民國九十七年六月。
[6] Chee Wei Tan, Tim C. Green and Carlos A. Hernandez-Aramburo,
“Analysis of perturb and observe maximum power point tracking
algorithm for photovoltaic applications,” Power and Energy
Conference, 2008. PECon 2008. IEEE 2nd International,
pp.237-242, 2008..
[7] Ahmed K. Abdelsalam, Ahmed M. Massoud, Shehab Ahmed and
65
Prasad Enjeti, “High Performance Adaptive Perturb and Observe
MPPT Technique for Photovoltaic Based Microgrids,” Power
Electronics, IEEE Transactions on Volume: 26, Issue: 4,
pp.1010-1021, 2011.
[8] 古必廣,「數位式高性能太陽能路燈系統之研製」,雲林科技大
學電機系工程碩士學位論文,民國九十五年六月。
[9] Fangrui Liu, Shanxu Duan, Fei Liu, Bangyin Liu, and Yong Kang,
“A Variable Step Size INC MPPT Method for PV Systems,”
Industrial Electronics, IEEE Transactions on Volume: 55 , Issue: 7,
pp.2622-2628, 2008.
[10] Jiyong Li and Honghua. Wang, “A novel stand-alone PV generation
system based on variable step size INC MPPT and SVPWM control,”
Power Electronics and Motion Control Conference, 2009. IPEMC
'09. IEEE 6th International, pp.2155-2160, 2009.
[11] Zhou Yan, Liu Fei, Yin Jinjun and Duan Shanxu, “Study on
realizing MPPT by improved Incremental Conductance method with
variable step-size,” Industrial Electronics and Applications, 2008.
ICIEA 2008. 3rd IEEE Conference, pp.547-550, 2008.
[12] M. F. Ishengoma and E. L. Norum ,” Design and implementation of
a digitally controlled stand-alone photovoltaic power supply,”
Nordic Workshop on Power and Industrial Electronics, pp.12-14,
2002.
[13] N. Mutoh, M. Ohno, and T. Inoue, “A method for MPPT control
while searching for Parameters corresponding to weather conditions
PV Generation Systems,” IEEE Transactions on Industrial
Electronics, vol. 53, issue: 4, pp.1055-1065, Aug. 2006.
66
[14] A.V. Jayawardena, W.M.D.T. Weerasinghe, W.S. Coorera, S.G.
Abeyratne and K.R.M.N. Rathnayake, “Maximum power tracking
for PVs with improved tracking accuracy at irradiance transients,”
Sustainable Energy Technologies (ICSET), 2010 IEEE International
Conference, pp.1-4, 2010.
[15] E. Koutroulis, K. Kalaitzakis, and N. C. Voulgaris, “Development of
a Microcontroller-Based Photovoltaic Maximum Power Point
Tracking Control System,” IEEE Transactions on Power Electronics,
vol. 16, no. 1, pp. 46-54, Jan. 2001.
[16] K. H. Hussein, I. Muta, T. Hoshino, and M. Osakada, “Maximum
Photovoltaic Power Tracking: an Algorithm For Rapidly Changing
Atmospheric Condition,” Generation Transmission Distribution, vol.
142, no. 1, pp. 59-64, 1995.
[17] P. Midya, P. T. Kerin, R. J. Turnbull, R. Reppa and J. Kimball,”
Dynamic Maximum Power Point Tracker for Photovoltaic
Applications,” IEEE Transactions on Power Electronics, Vol. 2, pp,
1710-1716, 1996.
[18] R. W. Erickson and D. Maksmovic, Fundamentals of Power
Electronics, 2nd Edition, 2000.
[19] 江炫樟,「電力電子學」第三版,全華圖書,民國九十四年八月。
[20] 梁適安,「交換式電源供給器之理論與實務設計」,全華圖書,
民國九十三年十月。
[21] 王順忠,「電力電子學」,臺灣東華書局股份有限公司, 2001
年。
[22] 曾百由,「數位訊號控制器原理與應用」,宏友圖書開發股份有
67
限公司,民國96 年11 月
[23] Chao Zhang, Dean Zhao, Jinjing Wang and Guichang Chen, “A
modified MPPT method with variable perturbation step for
photovoltaic system,” Power Electronics and Motion Control
Conference, 2009. IPEMC '09. IEEE 6th International,
pp.2096-2099, 2009.
[24] Chao Zhang and Dean Zhao, “A novel MPPT method with variable
perturbation step for photovoltaic system,” Industrial Electronics
and Applications, 2009. ICIEA 2009. 4th IEEE Conference,
pp.2184-2187, 2009.
[25] Noppadol Khaehintung, Theerayod Wiangtong and Phaophak
Sirisuk, “FPGA Implementation of MPPT Using Variable Step-Size
P&O Algorithm for PV Applications,” Communications and
Information Technologies, 2006. ISCIT '06. International
Symposium, pp.212-215, 2006.
[26] Ashish Pandey, Nivedita Dasgupta and Ashok Kumar Mukerjee,
“High-Performance Algorithms for Drift Avoidance and Fast
Tracking in Solar MPPT System,” Energy Conversion, IEEE
Transactions on Volume: 23 , Issue: 2, pp.681-689, June. 2008.

無法下載圖示 全文公開日期 2016/07/27 (校內網路)
全文公開日期 本全文未授權公開 (校外網路)
全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
QR CODE