簡易檢索 / 詳目顯示

研究生: 劉建麟
Chien-lin Liu
論文名稱: 新型PEO衍生物之合成及其應用於固態高分子電解質之自組裝行為及性質研究
Study on the Novel Synthesis of PEO Derivatives and Properties of Self-assembly Solid Polymer Electrolytes
指導教授: 許應舉
Ying-Gev Hsu
口試委員: 陳耿明
none
王英靖
none
學位類別: 碩士
Master
系所名稱: 工程學院 - 材料科學與工程系
Department of Materials Science and Engineering
論文出版年: 2006
畢業學年度: 94
語文別: 中文
論文頁數: 84
中文關鍵詞: 固態高分子電解質離子導電度相分離自組裝
外文關鍵詞: solid polymer electrolytes, ionic conductivity, phase separation, self-assembly
相關次數: 點閱:762下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本研究以具疏水性質之3,5-雙【【11-(甲基丙烯酸基)十一烷-1-氧】苄氧】苯甲酸(MBA),使之與聚乙二醇甲基醚【poly(ethylene glycol)methyl ether】進行酯化反應,合成出具自組裝(self-assembly)兩性分子基團之3,5-雙【【11-(甲基丙烯酸基)十一烷-1-氧】苄氧】苯甲酸聚氧乙烯酯(PEO-MBA),其化學結構藉由FT-IR和NMR等儀器證實。以50wt%PEO-MBA和50wt%的EMA (ethyl methacrylate) / HMA (hexyl methacrylate) / TEGDMA (tri(ethyl ene glycol)methacrylate)(莫耳比為30:20:50)均勻溶液在不同鋰鹽含量下,經由UV光硬化製備而得固態高分子電解質薄膜(SPEF),並利用FT-IR、SEM、SAXS、DSC和TGA來測定薄膜之化學組成、微結構及性質。實驗結果發現在SPEF中鋰離子會與PEO-MBA中之poly(ethylene oxide) (EO)n形成錯合物而產生相分離現象;同時,由DSC和TGA的觀察得知此SPEF之Tg隨著鋰離子含量增加而提高,薄膜有很好的熱穩定性且沒有任何的結晶相存在。以AC Impedance測定SPEF之導電性質,結果顯示常溫下薄膜導電度在[Li+]/[EO]比例為30mol%時有最高的導電度達1.6×10-5 Scm-1,且隨溫度上升而增加,比傳統純PEO電解質之導電度(10-6~10-7 Scm-1)高出許多,顯示PEO-MBA在SPEF中與基材產生相分離對其導電度有增進的效果。


A poly(ethylene glycol) methyl ether (M.w.=750) containing self-assembly compound, poly(ethylene glycol) methyl ether-3,5-bis (11-methacryloylundecyl-1-oxybenzyloxy) benzoate (PEO-MBA), was synthesized by the polyesterification of 3,5-bis(11-methacryloylundecyl -1-oxybenzyloxy) benzoic acid (MBA) with poly(ethylene glycol) methyl ether. The structures of PEO-MBA and the intermediates were identified by FTIR and NMR. Solid polymer electrolyte film (SPEF) was prepared by photopolymerization of the solution composed of 50wt% of PEO-MBA, mixture of EMA(ethyl methacrylate)/HMA(hexyl methacryl ate)/TEGDMA(tri(ethylene glycol) methyl methacrylate) (mole ratio(%) : 30/20/50), and various amount of LiClO4. The structure, morphology, and properties of the SPEF was characterized by FT-IR, SEM, SAXS, DSC, and TGA. It was found that the lithium ion in the SPEF formed complex with poly(ethylene oxide) (EO)n segments in PEO-MBA that caused PEO segments in the films became amorphous. The Tg of PEO segments in the SPEF increased with the concentration of lithium ion. The ionic conductivity of the SPEF was measured by AC Impedance. The value at room temperature could reach as high as 1.6×10-5 Scm-1 at the mole ratio of [Li+]/[EO]=30mole%, which was higher than that of the conventional PEO film(10-6~10-7 Scm-1). It seemed to us that the phase separation between PEO-MBA and the matrix in SPEF was of great advantages to the ionic conductivity.

中文摘要----------------------------------------------------I 英文摘要---------------------------------------------------II 目錄-------------------------------------------------------IV 附圖索引---------------------------------------------------VI 附表索引---------------------------------------------------IX 第一章 前言-----------------------------------------------1 第二章 文獻回顧-------------------------------------------7 2-1 鋰二次電池的發展-----------------------------------7 2-2 高分子電解質之發展---------------------------------9 2-3 分子自組裝技術之簡介------------------------------13 第三章 基本原理------------------------------------------19 3-1 高分子電解質導電機制------------------------------19 3-2 自組裝的原理--------------------------------------24 第四章 實驗部份------------------------------------------30 4-1 實驗藥品------------------------------------------31 4-2 儀器與設備----------------------------------------32 4-3 實驗方法------------------------------------------34 4-3.1 3, 5-雙【4-【11-(甲基丙烯酸根)十一-1-氧】 苄氧】苯甲酸聚氧乙烯酯之合成-----------------------34 4-3.2 自組裝型固態高分子電解質薄膜之製備----------------35 4-4 儀器分析------------------------------------------37 第五章 結果與討論----------------------------------------40 5-1 3, 5-【4-【11-(甲基丙烯酸根)十一-1-氧】苄氧】苯 甲酸聚氧乙烯酯之結構鑑定與分析------------------------40 5-2 固態高分子電解質薄膜結構之鑑定------------------------44 5-2.1 高分子電解質錯合物化學結構分析--------------------44 5-2.2 固態高分子電解質薄膜化學結構分析------------------51 5-2.3 固態高分子電解質之微結構探討----------------------54 5-3 固態高分子電解質之熱性質分析--------------------------59 5-4 固態高分子電解質之導電度分析--------------------------65 第六章 結論----------------------------------------------73 第七章 參考文獻------------------------------------------75

1.J. Hajek, French Patent, 1949, 8, 10.
2.費定國,李桐進,鋰電池專題報導,能源資源與環境,第3卷,第一期79年2月,10頁。
3.白世榮,固態聚電解質之應用與研究,材料會訊第七卷第五期高分子材料專輯。
4.J. R. MacCallum and C. A. Vincent, Eds., Polymer Electrolyte Reviews, Vol.1
and 2, Elsevier Applied Science, London, 1987 and 1989.
5.R. J. Neat, in Modern Battery Technology, C. D. S. Tuck, Ed., Ellis Horwood
Limited, New York, 1991.
6.B. Scrosati, Applications of Electroactive Polymers, Chapman & Hall, 1993.
7.D. W. Kim, J. K. Park, J. S. Bae, and S. I. Pyun, J. Polym. Sci. Part B:
Polym. Phys., 1996, 34, 2127-2137.
8.洪傳獻, Chemistry, 1999, 57, 175.
9.D. Świerczynski, A. Zalewska, and W. Wieczorek, Chem. Mater., 2001, 13, 1560-
1564.
10.P. Gavelin, R. Ljungbäck, P. Jannasch, and B. Wesslen, Solid State Ionics,
2002, 147, 325-332.
11.C. Berthier, W. Gorecki, M. Minier, M. B. Armand, J. M. Chabagno, and P.
Rigaud, Soild State Ionics, 1983, 11, 91-95.
12.F. B. Dias, L. Plomp, and J. B. J. Veldhuis, J. Power Sources, 2000, 88,
169-191.
13.Y. Yu, L. Zhang, and A. Eisenberg, Macromolecules, 1998, 31, 1144-1154.
14.L. M. Bronstein, C. Joo, R. Karlinsey, A. Ryder, J. W. Zwanziger, Chem.
Mater., 2001, 13, 3678–3684.
15.M. A. Hempenius, B. M. W. Langeveld-Voss, J. A. E. H. van Haare, R. A. J.
Janssen, S. S. Sheiko, J. P. Spatz, M.Moller, and E. W. Meijer, J. Am.
Chem. Soc., 1998, 120, 2798-2804.
16.Q. Shuyan and A. K. Charkraborty, J. Chem. Phys., 2001, 115, 3401-3405.
17.C. X. Cheng, Y. Huang, R. P. Tang, E. Chen, and F. Xi, Macromolecules,
2005, 38, 3044-3047.
18.Y. Chang, Y. C. Kwon, S. C. Lee, and C. Kim, Macromolecules, 2000, 33, 4496-
4500.
19.E. Nicol, F. Niepceron, C. Bonnans-Plaisance, and D. Durand, Polymer, 2005,
46, 2020-2028.
20.U. Beginn, G. Zipp, and M. Möller, Adv. Mater., 2000, 12, 510-513.
21.U. Beginn, G. Zipp, A. Mourran, P. Walther, and M. Möller, Adv. Mater.,
2000, 12, 513-516.
22.S. Rajendarn, T. Uma, Mater Letters, 2000, 44, 242-247.
23.蔡克群,次世代二次電池-鋰金屬二次電池開發展望,工業材料, 1999,146,127。
24.H. W. Chen, F. C. Chang, Polymer, 2001, 42, 9763-9769.
25.J. Y. Lee, P. C. Painter, and M. M. Coleman, Macromolecules, 1988, 21, 954- 960.
26.H. D. Wu, C. C. M. Ma, and F. C. Chang, Macromolecules, 1999, 32, 3097-3105.
27.W. H. Meyer, Adv. Mater. 1998, 10, 439-448.
28.陳廷彥,含聚醚鏈環氧樹酯型高分子電解質之製備與其特性探討,國立成功大學化學工
程學系碩士論文,2002。
29.D. E. Fenton, J. M. Parker and P. V. Wright, Polymer, 1973, 14, 589.
30.P. V. Wright, Br. Polym. J., 1975, 7, 319.
31.M. B. Armand, J. M. Chabagno and M. J. Duclot, Second International Meeting
on Solid Electrolytes, St Andrews, Scotland, Sept., 1978, 20-22.
32.K. Murata, S. Izuchi, and Y. Yoshihisa, Electrochim. Acta, 2000, 45, 1501-
1508.
33.A. Killis, J. F. LeNest, A. Gandini, H. Cheradame, and J. P. Cohen, Solid
State Ionics, 1984, 14, 231.
34.P. G. Hall, G. R. Davies, J. E. McIntyre, I. M. Ward, D. J. Bannister, and
K. M. F. Le Brocq, Polym. Commun., 1986, 27, 98-100.
35.J. Nishimoto, N. Furuya, and M. Watanabe, Extended Abstracts of 62nd
Meeting of Japanese Electrochemical Society, 3J12, 1995.
36.Y. Tada, M. Stato, N. Takeno, T. Kameshima, Y. Nakacho, and K. Shigekara,
Macromol. Chem. Phys., 1994, 195, 571.
37.A. S. Gozdz, C. N. Schmutz, and J. M. Tarascon, US Patent No.5, 1995, 418,
091.
38.U. Lauter, W. H. Meyer, and G. Wegner, Macromolecules, 1997, 30, 2092-2101.
39.E. Vedejs, and S. T. Diver, J. Am. Chem. Soc., 1993, 115, 3358-3359.
40.W. J. Liang, and P. L. Kuo, Polymer, 2004, 45, 1617-1626.
41.J. Xi, and X. Tang, Electrochimica Acta, 2005, 50, 5293-5304.
42.H. M. Kao and C. L. Chen, Angew. Chem. Int. Ed., 2004, 43, 980-984.
43.H. Ming Kao, H. Ming Chao, and P. C. Chang, Macromolecules, 2006, 39, 1029-
1040.
44.H. Xinping, and S. K. Siong, Polymer, 2001, 42, 4181-4188.
45.D. W. Yoo, S. K. Yoo, C. Kim, and J. K. Lee, J. Chem. Sci., Dalton Trans.
2002, 3931.
46.P. Jannasch, Polymer, 2002, 43, 6449-6453.
47.D. J. Meier, J. Polym. Sci., part C, 1969, 26, 81.
48.A. K. Khandpur, S. Forster, F. S. Bates, I. W. Hamley, A, J, Ryan, W. Bras,
K. Almdal, and K. Mortensen, Macromolecules, 1995, 28, 8796-8806.
49.B. Chu, Langmuir, 1995, 11, 414-421.
50.P. Alexandridis, Curr. Opin. Colloid Interface Sci. 1996, 1, 490.
51.Z. Tuzar, and P. Kratochvil, in Surface and Colloid Science (Ed:E.
Matijevic), Plenum, New York, 1993.
52.C. Tsitsilianis, P. Alexandridis, and B. Lindman, Macromolecules, 2001,34,
5979-5983.
53.J. Zhao, B. Majumdar, M. F. Schulz, F. S. Bates, K. Almdal, K. Mortensen,
D. A. Hajduk, and S. M. Gruner, Macromolecules, 1996, 29, 1204-1215.
54.M. F. Schulz, A. K. Khandpur, F. S. Bates, K. Almdal, K. Mortensen, D. A.
Hajduc, and S. M. Gruner, Macromolecules, 1996, 29, 2857-2867.
55.G. Liu, L. Qiao, and A. Guo, Macromolecules, 1996, 29, 5508-5510.
56.J. F. Gohy, B. G. G. Lohmeijer, A. Alexeev, X. S. Wang, I. Manners, M. A.
Winnik, and U. S. Schubert, Chem. Eur. J., 2004, 10, 4315-4323.
57.R. Djalali, S. Y. Li, and M. Schmidt, Macromolecules, 2002, 35, 4282-4288.
58.M. Zhang, M. Drechsler, and A. H. E. Muller, Chem. Mater. 2004, 16, 537-544.
59.M. Lee, B. K. Cho, K. J. Ihn, W. K. Lee, N. K. Oh, and W. C. Zin, J. Am.
Chem. Soc., 2001, 123, 4647-4648.
60.M. Lee, D. W. Lee, B. K. Cho, J. Y. Yoon, and W. C. Zin, J. Am. Chem.
Soc., 1998, 120, 13258- 13259.
61.M. Lee, B. K. Cho, N. K. Oh, and W. C. Zin, Macromolecules, 2001, 34, 1987-
1995.
62.E. R. Zubarev, M. U. Pralle, E. D. Sone, and S. I. Stupp, J. Am. Chem.
Soc., 2001, 123, 4105-4106.
63.U. Beginn, G. Zipp, and M. Moller, Chem. Eur. J., 2000, 6, 2016-2023.
64.U. Beginn, G. Zipp, and M. Moller, J. Polym. Sci. part A, 2000, 38, 631-640.
65.S. C. Mui, P. E. Trapa, B. Huang, P. P. Soo, M. I. Lozow, T. C. Wang, R. E.
Cohen, A. N. Mansour, S. Mukerjee, A. M. Mayes, and D. R. Sadowaya, J.
Electrochem. Soc., 2002, 149, A1610-A1615.
66.E. F. Spiegel, K. J. Adamic, B. D. Williams, and A. F. Sammells, Polymer,
2000, 41, 3365-3369.
67.G. C. Eastmond, and P. Schofield, Polymer, 1997, 38, 1753-1761.
68.M. B. Armand, Sixth International Conference on Solid State Ionics,
Garmisch-Partenkirchen, 1987, paper A4-6.
69.M. Watanabe, A. Suzuki, N. Ogata, Macromolecules, 1986, 19, 1921-1925.
70.T. G. Fox, and P. J. Floy, J. Polym. Sci., 1954, 14, 315.
71.M. H. Cohen, and D. Turnbull, J. Chem. Phys., 1959, 31, 1164.
72.M. L. Williams, R. F. Landel, and J. D. Ferry, J. Am. Chem. Soc., 1955, 77,
3701.
73.C. A. Vincent, In Electrochemical Science and Technology of Polymers 2,
Elsevier Applied Science, London, 1990.
74.F. M. Gray, M. Fiona, In Solid Polymer Electrolytes: Fundamental and
Technological Applications; F. M. Gray Ed.; VCH: New York, 1991.
75.C. D. Robitaille, and D. Fauteux, J. Electrochem. Soc., 1986, 133, 315-325.
76.O. Ikkala, and G. T. Brinke, Science, 2002, 295, 2407-2409.
77.K. Ariga, Y. Lvov and T. Kunitake, J. Am. Chem. Soc., 1997, 119, 2224-2231.
78.Y. Lvov, K. Ariga, T. Kunitake, and I. Ichinose, J. Am. Chem. Soc., 1995,
117, 6117-6123.
79.W. B. Stockton, and M. F. Rubner, Macromolecules, 1997, 30, 2717-2725.
80.M. Lee, B. K. Cho, and W. C. Zin, Chem. Rev., 2001, 101, 3869-3892.
81.H. A. Klok, and S. Lecommandoux, Adv. Mater., 2001, 13, 1217-1229.
82.L. Leibler, Macromolecules, 1980, 13, 1602-1617.
83.M. W. Matsen, F. S. Bates, Macromolecules, 1996, 29, 1091-1098.
84.S. Förster, and M. Antonietti, Adv. Mater. 1998, 10, 195-217.
85.D. D. Perrin, Purification of Laboratory Chemicals, Pergamon Press, 2nd
Ed., 1980.
86.翁啟達,自組裝型固態高分子電解質合成及行為研究,國立台灣科技大學高分子工程研
究所碩士學位論文,2005。
87.M. Salomon, M. Xu, E. M. Eyring, S. Petrcci, J. Phys. Chem., 1994, 98, 8234-
8244.
88.P. P. Chu, M. J. Reddy, H. M. Kao, Soild State Ionics, 2003, 156, 141-153.
89.S. W. Yeh, K. H. Wei, Y. S. Sun, U. S. Jeng, K. S. Liang, Macromolecules,
2003, 36, 7903-7907.
90.S. W. Kuo, C. H. Wu, F. C. Chang, Macromolecules, 2004, 37, 192-200.
91.S. W. Yeh, K. H. Wei, Y. S. Sun, U. S. Jeng, K. S. Liang, Macromolecules,
2005, 38, 6559-6565.
92.W. J. Liang, Y. P. Chen, C. Pang Wu, and P. L. Kuo, J. Phys. Chem. B, 2005,
109, 24311-24318.
93.A. Nishimoto, K. Agehara, N. Furuya, T. Watanabe, and M. Watanabe,
Macromolecules, 1999, 32, 1541-1548.
94.侯武桓,梳狀聚醚共聚物應用於固態電解值之研究,國立成功大學化學工程學系碩士論
文,2002。

無法下載圖示 全文公開日期 2011/07/28 (校內網路)
全文公開日期 本全文未授權公開 (校外網路)
全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
QR CODE