簡易檢索 / 詳目顯示

研究生: 張誌富
Zhi-Fu Zhang
論文名稱: 高電壓增益及隔離可逆式結構之高效率單輸入多輸出電源轉換器
High-Efficiency Single-Input Multiple-Outputs Power Converter With High Voltage Gain and Isolated Bidirectional Framework
指導教授: 魏榮宗
Rong-Jong Wai
口試委員: 邱煌仁
Huang-Jen Chiu
林景源
Jing-Yuan Lin
段柔勇
Rou-Yong Duan
魏榮宗
Rong-Jong Wai
學位類別: 碩士
Master
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2019
畢業學年度: 107
語文別: 英文
論文頁數: 101
中文關鍵詞: 高效率電源轉換單輸入多輸出直流-直流轉換器雙向功率潮流隔離架構高電壓增益電壓箝制同步整流柔性切換耦合電感
外文關鍵詞: High-efficiency power conversion, Single-input multiple-outputs, dc-dc converter, Bidirectional power flow, Isolated framework, High voltage gain, Voltage clamping, Synchronous rectification, Soft switching, Coupled inductors
相關次數: 點閱:288下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本論文設計兩種新型直流-直流轉換器,其中包含新型高效率單輸入三輸出直流-直流轉換器及高效率隔離型可逆式單輸入多輸出直流-直流轉換器。高效率單輸入三輸出直流-直流轉換器具有高電壓轉換比以維持高壓直流匯流排能量,供給後級逆變器使用。高效率單輸入三輸出直流-直流轉換器使用一低匝數比之耦合電感達成高昇壓電壓增益,且採用輔助電感間接調整輔助電源輸出電壓;此外,高效率單輸入三輸出直流-直流轉換器透過電壓箝制及零電流切換技術,使本裝置具有高效率轉換及三種不同輸出電壓等級之特點。本論文為達到電氣隔離的功能,進階設計具有隔離架構之高效率隔離型可逆式單輸入多輸出直流-直流轉換器,可控制其雙向能量傳遞,並擁有高效率電源轉換之特性。高效率隔離型可逆式單輸入多輸出直流-直流轉換器可分別操作於降壓模式及昇壓模式,在降壓模式下,高壓直流匯流排多餘之能量可對予許雙向能量傳遞之輸入電源進行儲能;在昇壓模式下,低壓輸入電源之能量傳送到高壓直流匯流排,可供給後級逆變器負載所需之動力,且在兩個模式下同時具有一輔助電源對輔助電池進行浮充以維持輔助電池電量以穩定周邊元件所需能量。高效率隔離型可逆式單輸入多輸出直流-直流轉換器採用耦合電感為主之架構以提高昇/降壓之電壓比,且透輔助電感的設計間接調整輔助輸出端之電壓,同樣使用電壓箝制及柔性切換之技術,達到高效率電源轉換、雙向能量傳遞、高昇/降壓比以及多種輸出電壓等級之特點。本論文研製實際原型機並以實作結果驗證所發展之新型高效率單輸入三輸出直流-直流轉換器及高效率隔離型可逆式單輸入多輸出直流-直流轉換器電力轉換技術的有效性。


This thesis presents two kinds of newly-designed dc-dc converters including a high-efficiency single-input triple-outputs dc-dc converter (HSTDC) and a high-efficiency isolated bidirectional dc-dc converter (HEIBDC). The proposed HSTDC has a high voltage conversion ratio to sustain the high-voltage dc bus for the possible utilization of a later dc-ac inverter. The proposed HSTDC uses a coupled inductor with lower turn ratios to achieve the high step-up voltage gain, and adopts an auxiliary inductor to adjust the voltage of the auxiliary output terminal indirectly. Moreover, the utilization of voltage clamping and zero-current switching (ZCS) in the proposed HSTDC is helpful for accomplishing the goal of high-efficiency power conversion and three output voltage levels. In order to further achieve the objective of galvanic isolation, the proposed HEIBDC with an isolated framework can control bidirectional power flow with the property of high-efficiency power conversion. The proposed HEIBDC can be operated at two modes including the step-down mode and the step-up mode. At the step-down mode, the high-voltage dc bus transmits extra energy to charge the bidirectional input power source. At the step-up mode, it can transmit the energy from the input power source to the high-voltage dc bus for the utilization of a later dc-ac inverter, and from the auxiliary source (e.g., a battery module) to supply power for peripheral devices. The proposed HEIBDC uses a coupled inductor to increase the step-up/step-down voltage ratio, and adopts an auxiliary inductor to indirectly adjust the voltage of the auxiliary output terminal. Furthermore, the techniques of voltage clamping and soft switching are also used. As a result, the objectives of high-efficiency power conversion, bidirectional energy transmission, high step-up/step-down ratios, and various output voltages with different levels can be obtained in the proposed HEIBDC. The effectiveness of the proposed HSTDC and HEIBDC are verified by rich experimental results via practical prototypes.

中文摘要 I Abstract III 誌謝 V Contents VI List of Figures VIII List of Tables XI Chapter 1 Introduction 1 Chapter 2 Novel High-Efficiency Single-Input Triple-Outputs DC/DC Converter With Zero-Current Switching for High Step-Up Applications 7 2.1 Overview 7 2.2 Converter operations 8 2.3 Design guideline of circuit components 19 Chapter 3 High-Efficiency Isolated Bidirectional DC/DC Converter With Single-Input Multiple-Outputs 31 3.1 Overview 31 3.2 Converter operations 32 3.2.1 Step-down mode 36 3.2.2 Step-up mode 43 3.3 Design guideline of circuit components 50 Chapter 4 Experimental Results 61 4.1 Single-input triple-outputs dc/dc converter 61 4.2 Isolated bidirectional dc/dc converter with single-input multiple-outputs 70 Chapter 5 Discussions and Suggestions for Future Research 83 5.1 Discussions 83 5.2 Suggestions for future research 89 References 93 Biographical Sketch 100 Publication List 101

[1] A. T. Laura, V. I. Enric, M. A. Javier, M. P. Sylvia, and M. S. Luis, “Seamless sliding-mode control for bidirectional boost converter with output filter for electric vehicles applications,” IET Power Electron., vol. 8, no. 9, pp. 1808-1816, Sep. 2015.
[2] R. T. Naayagi, A. J. Forsyth, and R. Shuttleworth, “Performance analysis of extended phase-shift control of DAB dc-dc converter for aerospace energy storage system,” IEEE Conf. Power Electron and Drive Syst., pp. 514-517, Jun. 2015.
[3] J. M. Shen, H. L. Jou, and J. C. Wu, “Transformerless single-phase three-wire line-interactive uninterruptible power supply,” IET Power Electron., vol. 5, no. 9, pp. 1847-1855, Nov. 2012.
[4] Z. Amjadi and S. S. Williamson, “Prototype design and controller implementation for a battery-ultracapacitor hybrid electric vehicle energy storage system,” IEEE Trans. Smart Grid, vol. 3, no. 1, pp. 332-340, Mar. 2012.
[5] J. Cao and A. Emadi, “A new battery/ultracapacitor hybrid energy storage system for electric, hybrid, and plug-in hybrid electric vehicles,” IEEE Trans. Power Electron., vol. 27, no. 1, pp. 122-132, Jan. 2012.
[6] X. H. Liu, H. Li, and Z. Wang, “A fuel cell power conditioning system with low-frequency ripple-free input current using a control-oriented power pulsation decoupling strategy,” IEEE Trans. Power Electron., vol. 29, no. 1, pp. 159-169, Jan. 2014.
[7] A. Urtasun, P. Sanchis, and L. Marroyo, “Adaptive voltage control of the dc/dc boost stage in PV converters with small input capacitor,” IEEE Trans. Power Electron., vol. 28, no. 11, pp. 5038-5048, Nov. 2013.
[8] J. Yao, H. Li, Z. Chen, X. F. Xia, X. Y. Chen, Q. Li, and Y. Liao, “Enhanced control of a DFIG-based wind-power generation system with series grid-side converter under unbalanced grid voltage conditions,” IEEE Trans. Power Electron., vol. 28, no. 7, pp. 3167-3181, Jul. 2013.
[9] A. Nahavandi, M. T. Hagh, and M. B. Bannae, “A nonisolated multiinput multioutput dc-dc boost converter for electric vehicle applications,” IEEE Trans. Power Electron., vol. 30, no. 4, pp. 1818-1835, Apr. 2015.
[10] M. Forouzesh, Y. Shen, K. Yari, Y. P. Siwakoti, and F. Blaabjerg, “High-efficiency high step-up dc-dc converter with dual coupled inductors for grid-connected photovoltaic systems,” IEEE Trans. Power Electron., vol. 33, no. 7, pp. 5967-5982, Jul. 2018.
[11] Y. P. Siwakoti and F. Blaabjerg, “Single switch nonisolated ultra-step-up dc-dc converter with an integrated coupled inductor for high boost applications,’’ IEEE Trans. Power Electron., vol. 32, no. 11, pp. 8544-8558, Nov. 2017.
[12] T. Nouri, N. Vosoughi, S. H. Hosseini, and M. Sabahi, “A novel interleaved non-isolated ultrahigh-step-up dc-dc converter with ZVS performance,” IEEE Trans. Ind. Electron., vol. 64, no. 5, pp. 3650-3661, May 2017.
[13] Y. Ye, K. W. E. Cheng, and S. Chen, “A high step-up PWM dc-dc converter with coupled-inductor and resonant switched-capacitor,” IEEE Trans. Power Electron., vol. 32, no. 10, pp. 7739-7749, Oct. 2017.
[14] R. J. Wai and J. J. Liaw, “High-efficiency isolated single-input multiple-output bidirectional converter,” IEEE Trans. Power Electron., vol. 30, no. 9, pp. 4914-4930, Sep. 2015.
[15] A. M. S. S. Andrade, L. Schuch, and M. L. D. S. Martins, “Analysis and design of high-efficiency hybrid high step-up dc-dc converter for distributed PV generation systems,” IEEE Trans. Ind. Electron., vol. 66, no. 5, pp. 3860-3868, May 2019.
[16] M. Forouzesh, K. Yari, A. Baghramian, and S. Hasanpour, “Single-switch high step-up converter based on coupled inductor and switched capacitor techniques with quasi-resonant operation,” IET Power Electron., vol. 10, no. 2, pp. 240-250, Feb. 2017.
[17] R. J. Wai and K. H. Jheng, “High-efficiency single-input multiple-output dc-dc converter,” IEEE Trans. Power Electron., vol. 28, no. 2, pp. 886-898, Feb. 2013.
[18] S. S. Dobakhshari, J. Milimonfared, M. Taheri, and H. Moradisizkoohi, “A quasi-resonant current-fed converter with minimum switching losses,” IEEE Trans. Power Electron., vol. 32, no. 1, pp. 353-362, Jan. 2017.
[19] K. C. Tseng, J. T. Lin, and C. C. Huang, “High step-up converter with three-winding coupled inductor for fuel cell energy source applications,” IEEE Trans. Power Electron., vol. 30, no. 2, pp. 574-581, Feb. 2015.
[20] W. Chen, P. Rong, and Z. Lu, “Snubberless bidirectional dc-dc converter with new CLLC resonant tank featuring minimized switching loss,” IEEE Trans. Ind. Electron., vol. 57, no. 9, pp. 3075-3086, Sep. 2010.
[21] M. Ahmadi, M. R. Mohammadi, E. Adib, and H. Farzanehfard, “Family of non-isolated zero current transition bi-directional converters with one auxiliary switch,” IET Power Electron., vol. 5, no. 2, pp. 158-165, Feb. 2012.
[22] R. J. Wai and J. J. Liaw, “High-efficiency coupled-inductor-based step-down converter,” IEEE Trans. Power Electron., vol. 31, no. 6, pp. 4265-4279, Jun. 2016.
[23] R. J. Wai, L. S. Hong, and J. J. Liaw, “High-efficiency bidirectional single-input multiple-output power converter,” IET Power Electron., vol. 7, no. 5, pp. 1278-1293, May 2014.
[24] B. Wang, V. R. K. Kanamarlapudi, L. Xian, X. Peng, K. T. Tan, and P. L. So, “Model predictive voltage control for single-inductor multiple-output dc-dc converter with reduced cross regulation,” IEEE Trans. Ind. Electron, vol. 63, no. 7, pp. 4187-4197, Jul. 2016.
[25] B. Wang, X. Zheng, J. Ye, and H. B. Gooi, “Deadbeat control for a single-inductor multiple-input multiple-output dc-dc converter,” IEEE Trans. Power Electron., vol. 34, no. 2, pp. 1914-1924, Feb. 2019.
[26] Y. Zheng, M. Ho, J. Guo, and K. N. Leung, “A single-inductor multiple-output auto-buck-boost dc-dc converter with tail-current control,” IEEE Trans. Power Electron., vol. 31, no. 11, pp. 7857-7875, Nov. 2016.
[27] W. Yu, H. Qian, and J. S. Lai, “Design of high-efficiency bidirectional dc-dc converter and high-precision efficiency measurement,” IEEE Trans. Power Electron., vol. 25, no. 3, pp. 650-658, Mar. 2010.
[28] K. Filsoof and P. W. Lehn, “A bidirectional multiple-input multiple-output modular multilevel dc-dc converter and its control design,” IEEE Trans. Power Electron., vol. 31, no. 4, pp. 2767-2779, Apr. 2016.
[29] H. Ardi, A. Ajami, and M. Sabahi, “A novel high step-up dc-dc converter with continuous input current integrating coupled inductor for renewable energy applications,” IEEE Trans. Ind. Electron., vol. 65, no. 2, pp. 1306-1315, Feb. 2018.
[30] O. Ray, A. P. Josyula, S. Mishra, and A. Joshi, “Integrated dual-output converter,” IEEE Trans. Ind. Electron., vol. 62, no. 1, pp. 371-382, Jan. 2015.
[31] G. Chen, Z. Jin, X. He, and X. Qing, “Principle and topology synthesis of integrated single-input dual-output and dual-input single-output dc-dc converters,” IEEE Trans. Ind. Electron., vol. 65, no. 5, pp. 3815-3825, May 2018.
[32] A. Ganjavi, H. Ghoreishy, and A. A. Ahmad, “A novel single-input dual-output three-level dc-dc converter,” IEEE Trans. Ind. Electron., vol. 65, no. 10, pp. 8101-8111, Oct. 2018.
[33] S. D. Tavakoli, J. Khajesalehi, M. Hamzeh, and K. Sheshyekani, “Decentralised voltage balancing in bipolar dc microgrids equipped with trans-Z-source interlinking converter,” IET Renew. Power Gener., vol. 10, no. 5, pp. 703-712, May 2016.
[34] Y. S. Lee and Y. Y. Chiu, “Zero-current-switched-capacitor bidirectional dc-dc converter,” IEE Proc. Electr. Power Appl., vol. 152, no. 3, pp.1525-1530, Nov. 2005.
[35] L. Jiang, X. Zhang, C. L. Yin, C. Mi, S. Li, and M. Y. Zhang, “A novel soft-switching bidirectional dc-dc converter with coupled inductors,” IEEE Conf. Applied Power Electron., pp. 3040-3044, Mar. 2013.
[36] Y. P. Hsieh, J. F. Chen, L. S. Yang, C. Y. Wu, and W. S. Liu, “High-conversion-ratio bidirectional dc-dc converter with coupled inductor,” IEEE Trans. Power Electron., vol. 61, no. 1, pp. 210-222, Jan. 2014.
[37] R. Y. Duan and J. D. Lee, “High-efficiency bidirectional dc-dc converter with coupled inductor,” IET Power Electron., vol. 5, no. 1, pp. 115-123, Jan. 2012.
[38] J. W. Kim, J. P. Moon, and G. W. Moon, “Analysis and design of a single-switch forward-flyback two-channel LED driver with resonant-blocking capacitor,” IEEE Trans. Power Electron., vol. 31, no. 3, pp. 2314-2323, Mar. 2016.
[39] Y. Chen, C. Chang, and P. Yang, “A novel primary-side controlled universal-input AC-DC LED driver based on a source-driving control scheme,” IEEE Trans. Power Electron., vol. 30, no. 8, pp. 4327-4335, Aug. 2015.
[40] J. W. Shin, S. J. Choi, and B. H. Cho, “High-efficiency bridgeless flyback rectifier with bidirectional switch and dual output windings,” IEEE Trans. Power Electron., vol. 29, no. 9, pp. 4752-4762, Sep. 2014.
[41] K. Soltanzadeh, H. Khalilian, and M. Dehghani, “Analysis, design and implementation of a zero voltage switching two-switch CCM flyback converter,” IET Circuits, Devices Syst., vol. 10, no. 1, pp. 20-28, Jan. 2016.
[42] M. Mohammadi and E. Adib, “Lossless passive snubber for half bridge interleaved flyback converter,” IET Power Electron., vol. 7, no. 6, pp. 1475-1481, Jun. 2014.
[43] J. K. Kim, J. B. Lee, and G. W. Moon, “Zero-voltage switching multioutput flyback converter with integrated auxiliary buck converter,” IEEE Trans. Power Electron., vol. 29, no. 6, pp. 3001-3010, Jun. 2014.
[44] M. A. Rezaei, K. J. Lee, and A. Q. Huang, “A high-efficiency flyback micro-inverter with a new adaptive snubber for photovoltaic applications,” IEEE Trans. Power Electron., vol. 31, no. 1, pp. 318-327, Jan. 2016.
[45] J. Guo, H. Ge, J. Ye, and A. Emadi, “Improved method for MOSFET voltage rise-time and fall-time estimation in inverter switching loss calculation,” IEEE Conf. Transportation Electrification (ITEC), pp. 1-6, Jul. 2015.
[46] F. H. Zhang and Y. G. Yan, “Novel forward-flyback hybrid bidirectional dc-dc converter,” IEEE Trans. Ind. Electron., vol. 56, no. 5, pp. 1578-1584, May 2009.
[47] W. H. Li, H. M. Wu, H. B. Yu, and X. N. He, “Isolated winding-coupled bidirectional ZVS converter with PWM plus phase-shift (PPS) control strategy,” IEEE Trans. Power Electron., vol. 26, no. 12, pp. 3560-3570, Dec. 2011.
[48] T. J. Liang and J. H. Lee, “Novel high-conversion-ratio high-efficiency isolated bidirectional DC-DC converter,” IEEE Trans. Ind. Electron., vol. 62, no. 7, pp. 4492-4503, Jul. 2015.
[49] G. Chen, Y. S. Lee, S. Y. R. Hui, D. Xu, and Y. Wang, “Actively clamped bidirectional flyback converter,” IEEE Trans. Ind. Electron., vol. 47, no. 4, pp. 770-779, Aug. 2000.
[50] C. L. Shen, S. Y. Shen, P. C. Chiu, and T. C. Liang, “Isolated bidirectional converter with minimum active switches for high-voltage ratio achievement and micro-grid applications,” IET Power Electron., vol. 10, no. 15, pp. 2208-2216, Aug. 2017.
[51] Y. Zhang, X. F. Cheng, C. Yin, and S. Cheng, “Analysis and research of a soft-switching bidirectional DC-DC converter without auxiliary switches,” IEEE Trans. Ind. Electron., vol. 65, no. 2, pp. 1196-1204, Feb. 2018.
[52] V. F. Pires, D. Foito, and A. Cordeiro, “A DC-DC converter with quadratic gain and bidirectional capability for batteries/supercapacitors,” IEEE Trans. Ind. Appl., vol. 54, no. 1, pp. 274-285, Feb. 2018.
[53] N. Mohan, T. M. Undeland, and W. P. Robbins, Power Electronics: Converters, Applications, and Design. New York: Johh Wiely & Sons Inc., 1995.
[54] G. R. C. Mouli, J. Schijffelen, M. V. D. Heuvel, M. Kardolus, and P. Bauer, “A 10kW solar-powered bidirectional EV charger compatible with chademo and COMBO,” IEEE Trans. Power Electron., vol. 34, no. 2, pp. 1082-1098, Feb. 2019.
[55] J. Reinert, A. Brockmeyer, and R. W. A. A. D. Doncker, “Calculation of losses in ferro- and ferrimagnetic materials based on the modified Steinmetz equation,” IEEE Trans. Ind. Appl., vol. 37, no. 4, pp. 1055-1061, July-Aug. 2001.
[56] L. Schuch, C. Rech, H. L. Hey, H. A. Gründling, H. Pinheiro, and J. R. Pinheiro, “Analysis and design of a new high-efficiency bidirectional integrated ZVT PWM converter for dc-bus and battery-bank interface,” IEEE Trans. Ind. Appl., vol. 42, no. 5, pp. 1321-1332, Sep.-Oct. 2006.
[57] Z. Saadatizadeh, P. C. Heris, E. Babaei, and M. Sabahi, “A new nonisolated single-input three-output high voltage gain converter with low voltage stresses on switches and diodes,” IEEE Trans. Ind. Electron., vol. 66, no. 6, pp. 4308-4313, Jun. 2019.

無法下載圖示 全文公開日期 2024/06/28 (校內網路)
全文公開日期 2029/06/28 (校外網路)
全文公開日期 2029/06/28 (國家圖書館:臺灣博碩士論文系統)
QR CODE