簡易檢索 / 詳目顯示

研究生: 羅皓文
HAO-WEN LO
論文名稱: 奈米纖維素纖維製備及其與三醋酸纖維素複合材料紡絲之研究
Preparation of cellulose nanofibers and its reinforced cellulose triacetate composites for fiber spinning.
指導教授: 吳昌謀
Chang-Mou Wu
口試委員: 鄒國臺
Kou-Tai Tzou
宋憶青
I-Ching Sung
郭東昊
Dong-Hau Kuo
學位類別: 碩士
Master
系所名稱: 工程學院 - 材料科學與工程系
Department of Materials Science and Engineering
論文出版年: 2021
畢業學年度: 109
語文別: 中文
論文頁數: 77
中文關鍵詞: 奈米纖維素濕式紡絲回收三醋酸纖維連續式石臼研磨
外文關鍵詞: cellulose nanofiber, wet spinning, recycle triacetate, continuous stone grinding
相關次數: 點閱:194下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究第一部分將草本來源的果皮廢棄物以水熱法結合石臼研磨法製備CNF,取代傳統成本高及耗費大量的溶劑的酸解法及 Tempo 氧化法;本研究第二部分利用濕式紡絲技術,將所製備 之CNF來強化TAC廢棄物,達到結合兩種廢棄物再利用循環之目的,藉由濕式紡絲參數優化使 CNF/TAC複合纖維之強韌性得以再提升,進而使纖維得以細化。
    胡蘿蔔渣及檸檬皮經由水熱法處理後,成功去除塊狀之果膠及非纖維素的成分,石盤間隙調整至0.16mm纖維逐漸細化至奈米等級直徑分別為46nm及61nm,奈米纖維素溶液24小時後皆無分層;隨著研磨參數石盤間隙接觸式增加,聚合度隨之降低,因研磨時產生的高剪切力,葡萄醣鏈的斷裂所導致。
    XRD觀察顯示纖維素I的結晶型態,研磨過程添加鹼液並沒有改變纖維素結晶型態,結晶度方面胡蘿蔔渣及檸檬皮奈米纖維素在水熱法處理後分別從原樣33%及30%提升至52%及50%顯示有良好的純化,石臼研磨處理後分別提升至68%及64%證實石臼式研磨可有效的破壞纖維素非結晶區。熱性質方面,經水熱及研磨處理後,熱性質有逐漸提升。FT-IR分析顯示,其官能基在1733 cm-1 處特徵峰值有降低的現象,表明水熱法除去半纖維素,此外研磨後OH峰值強度增加,纖維素奈米化後暴露出更多的羥基。
    不同生質來源的胡蘿蔔渣、檸檬皮、紙漿CNF/TAC纖維由濕式紡絲成功獲得,纖維強度提升由TAC纖維1.75g/den分別增強至胡蘿蔔渣2.31 g/den、檸檬皮2.23 g/den、紙漿2.06 g/den,證實本研究經連續式石臼研磨製程之CNF可使回收TAC得以增強;CNF/TAC纖維經延伸3倍及4倍後,丹尼數皆有下降,分別為6.3D及14.7D,在較快收卷速度下進行延伸,使順向度從0.22提升至0.55,強度隨之提升至2.63 g/den,纖維截面形狀因凝固浴添加30%溶劑後,纖維截面可從啞鈴狀控制改變至圓形。


    Nowadays, the preparation of CNF mainly uses traditional acid hydrolysis and Tempo oxidation for wood pulp or wood. In order to solve the high cost of these two CNF separation methods and consume a lot of solvents. In the first part of this research, a low-concentration solvent hydrothermal method combined with a continuous stone grinding method was developed to prepare CNF by using carrot residues and lemon peel. On the other hand, the production of polarizers produces a lot of TAC waste, which has low strength and poor durability. Therefore, the second part of this research using CNF prepare by stone grinding to reinforce the recycled cellulose triacetate by wet spinning technology, achieving the purpose of combining two types of waste recycling.
    After the carrot pomace and lemon peel are treated by hydrothermal method, the massive pectin and non-cellulose components are successfully removed. The gap between the stone discs was contacted to 0.16mm, the fibers were gradually refined to nano-grade diameters of 46nm and 61nm, respectively. Cellulose Nanofiber solution indicating good disperse after 24 hours. As the grinding parameters increase the gap between the stone discs, the degree of polymerization decreases due to the high shear force generated during grinding and lead the glucose chain broke.
    XRD result showed cellulose I typical polymorph. The addition of alkaline liquid during the grinding process did not change the crystalline form of cellulose. After hydrothermal treatment, carrot residues and lemon peel cellulose nanofiber have improved the crystallinity index from 33% and 30% to 52% and 50% respectively, showing good purification. The grinding treatment increased the crystallinity index to 68% and 64% respectively, confirming that the process can effectively destroy the amorphous cellulose area. In terms of thermal properties, the thermal properties are gradually improved after hydrothermal and grinding treatments. FT-IR result showed the functional group at 1733 cm-1 decreased, indicating that the hydrothermal method removed hemicellulose, and the intensity of the OH peak increased after grinding treatment, exposing more hydroxyl groups when cellulose refined to nanosize.
    Carrot residue, lemon peel, and pulp CNF/TAC fibers of different biomass sources were obtained by wet spinning. The fiber strength increased from 1.75 g/den of TAC fiber to 2.31 g/den of carrot residues, 2.23 g/den of lemon peel, and 2.06 g/den of pulp, which confirmed that CNF prepare by stone grinding in this study is a good reinforcing material.
    The draw ratio had significant influence on the linear density of the CNF/TAC fiber. The fiber decrease the denier to 6.3D and 14.7D was achieved at draw ratio of 3 and 4 respectively. The drawing process is carried out at a faster winding speed, and the degree of orientation index increased from 0.22 to 0.55, and the strength achieved at 2.63 g/den. After 30% solvent is added into coagulation bath, the cross-section of the fiber can be controlled from a dumbbell shape to a round shape.

    章節目錄 摘要 2 Abstract 4 章節目錄 6 圖目錄 9 表目錄 12 1 前言 13 1.1 引言 13 1.2 三醋酸纖維素 14 1.3 奈米纖維素 15 1.4 奈米纖維素製備方式 17 1.4.1 強酸鹼化學法 17 1.4.2 TEMPO氧化法 18 1.4.3 壓力釜水熱法 19 1.4.4 高壓均質處理法 21 1.4.5 球磨處理法 21 1.4.6 石臼式研磨法 22 1.5 纖維紡絲工程 23 1.5.1 纖維紡絲技術原理 23 1.5.2 濕式紡絲凝固浴條件 24 1.5.3 紡絲延伸加工 27 1.6 研究動機 28 2 實驗 30 2.1 實驗材料 30 2.2 實驗設備 31 2.3 實驗流程 32 2.4 實驗方法 34 2.4.1 奈米纖維素前處理 34 2.4.2 奈米纖維素製備 34 2.4.3 溶劑置換 35 2.4.4 CNF/TAC紡絲液配置 35 2.4.5 CNF/TAC複合纖維製備 36 2.5 分析測試方法 38 2.5.1 場發射掃描式電子顯微鏡分析 38 2.5.2 奈米纖維素之分散性測試 38 2.5.3 結晶度分析 38 2.5.4 奈米纖維素纖維之聚合度測試 39 2.5.5 熱性能分析 40 2.5.6 化學結構分析 40 2.5.7 纖維順向度分析 40 2.5.8 機械性質分析 41 3 結果與討論 42 3.1 奈米纖維素微結構分析 42 3.2 奈米纖維素分散分析 47 3.3 奈米纖維素聚合度分析 49 3.4 奈米纖維素結晶度分析 51 3.5 奈米纖維素熱性質分析 55 3.6 奈米纖維素化學結構分析 57 3.7 不同生質來源CNF/TAC複合纖維分析 59 3.7.1 不同生質來源CNF/TAC複合纖維機械性質分析 59 3.7.2 不同生質來源CNF/TAC複合纖維微結構分析 61 3.8 不同濕式紡絲條件CNF/TAC纖維分析 63 3.8.1 不同濕式紡絲條件CNF/TAC纖維機械性質分析 63 3.8.2 不同濕式紡絲條件CNF/TAC纖維微結構分析 65 4 結論 67 5 參考文獻 69

    5 參考文獻
    1. Kim, J. H., Shim, B. S., Kim, H. S., Lee, Y. J., Min, S. K., Jang, D., ... & Kim, J. (2015). Review of nanocellulose for sustainable future materials. International Journal of Precision Engineering and Manufacturing-Green Technology, 2(2), 197-213.
    2. Flieger, M., Kantorova, M., Prell, A., Řezanka, T., & Votruba, J. (2003). Biodegradable plastics from renewable sources. Folia microbiologica, 48(1), 27-44.
    3. Feng, Y. H., Cheng, T. Y., Yang, W. G., Ma, P. T., He, H. Z., Yin, X. C., & Yu, X. X. (2018). Characteristics and environmentally friendly extraction of cellulose nanofibrils from sugarcane bagasse. Industrial Crops and Products, 111, 285-291.
    4. Rodrigues Filho, G., Monteiro, D. S., da Silva Meireles, C., de Assunção, R. M. N., Cerqueira, D. A., Barud, H. S., ... & Messadeq, Y. (2008). Synthesis and characterization of cellulose acetate produced from recycled newspaper. Carbohydrate Polymers, 73(1), 74-82.
    5. Yang, Z. Y., Wang, W. J., Shao, Z. Q., Zhu, H. D., Li, Y. H., & Wang, F. J. (2013). The transparency and mechanical properties of cellulose acetate nanocomposites using cellulose nanowhiskers as fillers. Cellulose, 20(1), 159-168.
    6. Wu, C. M., Danh, K. S., & Nakagaito, A. N. (2020). Effects of cellulose nanofiber on the thermal, mechanical, and optical properties of triacetate cellulose nanocomposites. Express Polymer Letters, 14(5).
    7. Zhou, Chengjun, and Qinglin Wu. "Recent development in applications of cellulose nanocrystals for advanced polymer-based nanocomposites by novel fabrication strategies." Nanocrystals-synthesis, characterization and applications (2012): 103-120..
    8. Börjesson, Mikaela, and Gunnar Westman. "Crystalline nanocellulose—preparation, modification, and properties." Cellulose-fundamental aspects and current trends (2015): 159-191.
    9. Heßler, Nadine, and Dieter Klemm. "Alteration of bacterial nanocellulose structure by in situ modification using polyethylene glycol and carbohydrate additives." Cellulose 16.5 (2009): 899-910.
    10. Lu, Ping, and You-Lo Hsieh. "Preparation and properties of cellulose nanocrystals: rods, spheres, and network." Carbohydrate polymers 82.2 (2010): 329-336.
    11. Klemm, D., Kramer, F., Moritz, S., Lindström, T., Ankerfors, M., Gray, D., & Dorris, A. (2011). Nanocelluloses: a new family of nature‐based materials. Angewandte Chemie International Edition, 50(24), 5438-5466.
    12. Khalil, H. A., Davoudpour, Y., Islam, M. N., Mustapha, A., Sudesh, K., Dungani, R., & Jawaid, M. (2014). Production and modification of nanofibrillated cellulose using various mechanical processes: a review. Carbohydrate polymers, 99, 649-665.
    13.廖聖茹、連泓原,全球植物加工工業製品特搜,工業材料,367 (2017) 089-099。
    14.Chen, Y., Liu, C., Chang, P. R., Cao, X., & Anderson, D. P. (2009). Bionanocomposites based on pea starch and cellulose nanowhiskers hydrolyzed from pea hull fibre: effect of hydrolysis time. Carbohydrate Polymers, 76(4), 607-615.
    15.Habibi, Youssef, Lucian A. Lucia, and Orlando J. Rojas. "Cellulose nanocrystals: chemistry, self-assembly, and applications." Chemical reviews 110.6 (2010): 3479-3500.
    16.Xu, X., Liu, F., Jiang, L., Zhu, J. Y., Haagenson, D., & Wiesenborn, D. P. (2013). Cellulose nanocrystals vs. cellulose nanofibrils: a comparative study on their microstructures and effects as polymer reinforcing agents. ACS applied materials & interfaces, 5(8), 2999-3009.
    17.Zuluaga, R., Putaux, J. L., Restrepo, A., Mondragon, I., & Ganán, P. (2007). Cellulose microfibrils from banana farming residues: isolation and characterization. Cellulose, 14(6), 585-592.
    18.Zhai, L., Kim, H. C., Kim, J. W., Choi, E. S., & Kim, J. (2018). Cellulose nanofibers isolated by TEMPO-oxidation and aqueous counter collision methods. Carbohydrate polymers, 191, 65-70.
    19.Isogai, A., Saito, T., & Fukuzumi, H. (2011). TEMPO-oxidized cellulose nanofibers. nanoscale, 3(1), 71-85.
    20.Isogai, Akira, and Yumiko Kato. "Preparation of polyuronic acid from cellulose by TEMPO-mediated oxidation." Cellulose 5.3 (1998): 153-164.
    21.Saito, T., Kimura, S., Nishiyama, Y., & Isogai, A. (2007). Cellulose nanofibers prepared by TEMPO-mediated oxidation of native cellulose. Biomacromolecules, 8(8), 2485-2491.
    22.Petroudy, Seyed Rahman Djafari, Jalal Ranjbar, and Esmaeil Rasooly Garmaroody. "Eco-friendly superabsorbent polymers based on carboxymethyl cellulose strengthened by TEMPO-mediated oxidation wheat straw cellulose nanofiber." Carbohydrate polymers 197 (2018): 565-575.
    23.Hiasa, S., Iwamoto, S., Endo, T., & Edashige, Y. (2014). Isolation of cellulose nanofibrils from mandarin (Citrus unshiu) peel waste. Industrial Crops and Products, 62, 280-285.
    24.Zimmermann, Tanja, Nicolae Bordeanu, and Esther Strub. "Properties of nanofibrillated cellulose from different raw materials and its reinforcement potential." Carbohydrate Polymers 79.4 (2010): 1086-1093.
    25.Zhang, Liyuan, Takuya Tsuzuki, and Xungai Wang. "Preparation of cellulose nanofiber from softwood pulp by ball milling." Cellulose 22.3 (2015): 1729-1741.
    26.李振綱, 范綱竹, 奈米纖維素的製備及應用. 科學發展, 2020. 572.
    27.Abe, Kentaro, and Hiroyuki Yano. "Comparison of the characteristics of cellulose microfibril aggregates of wood, rice straw and potato tuber." Cellulose 16.6 (2009): 1017-1023.
    28.Katayama, Ken-ichi, and Masaki Tsuji. "melt spinning, dry spinning and wet spinning. However, we are concerned." Advanced Fiber Spinning Technology (1994): 1.
    29.Devaux, E., Understanding the behaviour of synthetic polymer fibres during spinning, in Advances in Filament Yarn Spinning of Textiles and Polymers. 2014. p. 31-47.
    30.Ozipek, B., and H. Karakas. "Wet spinning of synthetic polymer fibers." Advances in filament yarn spinning of textiles and polymers. Woodhead Publishing, 2014. 174-186.
    31.Ismail, A. F., Rahman, M. A., Mustafa, A., & Matsuura, T. (2008). The effect of processing conditions on a polyacrylonitrile fiber produced using a solvent-free free coagulation process. Materials Science and Engineering: A, 485(1-2), 251-257.
    32.An, F., Zhou, P., Lu, C., & Liu, Y. (2019). Tuning the surface grooves of carbon fibers by dry-jet gel-spinning. Carbon, 143, 200-203.
    33.Kim, H. C., Kim, D., Lee, J. Y., Zhai, L., & Kim, J. (2019). Effect of wet spinning and stretching to enhance mechanical properties of cellulose nanofiber filament. International Journal of Precision Engineering and Manufacturing-Green Technology, 6(3), 567-575.
    34.Gao, Q., Jing, M., Chen, M., Zhao, S., Wang, W., Qin, J., & Wang, C. (2020). Microfibril alignment induced by stretching fields during the dry-jet wet spinning process: Reinforcement on polyacrylonitrile fiber mechanical properties. Polymer Testing, 81, 106191.
    35.Gupta, B., Revagade, N., Anjum, N., Atthoff, B., & Hilborn, J. (2006). Preparation of poly (lactic acid) fiber by dry‐jet‐wet‐spinning. I. Influence of draw ratio on fiber properties. Journal of applied polymer science, 100(2), 1239-1246.
    36.人造棉狀纖維試驗法13756, L., CNS.
    37.呂秋光,邱顯堂,劉熾章,賴鋕平,龔展暉, 纖維物理. 1998.5.
    38. Hallac, Bassem B., and Arthur J. Ragauskas. "Analyzing cellulose degree of polymerization and its relevancy to cellulosic ethanol." Biofuels, Bioproducts and Biorefining 5.2 (2011): 215-225.
    39.Shinoda, R., Saito, T., Okita, Y., & Isogai, A. (2012). Relationship between length and degree of polymerization of TEMPO-oxidized cellulose nanofibrils. Biomacromolecules, 13(3), 842-849.
    40.Qing, Y., Sabo, R., Zhu, J. Y., Agarwal, U., Cai, Z., & Wu, Y. (2013). A comparative study of cellulose nanofibrils disintegrated via multiple processing approaches. Carbohydrate polymers, 97(1), 226-234.
    41.Ni, J., Teng, N., Chen, H., Wang, J., Zhu, J., & Na, H. (2015). Hydrolysis behavior of regenerated celluloses with different degree of polymerization under microwave radiation. Bioresource technology, 191, 229-233.
    42.Mattonai, M., Pawcenis, D., Del Seppia, S., Łojewska, J., & Ribechini, E. (2018). Effect of ball-milling on crystallinity index, degree of polymerization and thermal stability of cellulose. Bioresource technology, 270, 270-277.
    43.Amiralian, N., Annamalai, P. K., Memmott, P., & Martin, D. J. (2015). Isolation of cellulose nanofibrils from Triodia pungens via different mechanical methods. Cellulose, 22(4), 2483-2498.
    44.Xie, J., Hse, C. Y., Cornelis, F., Hu, T., Qi, J., & Shupe, T. F. (2016). Isolation and characterization of cellulose nanofibers from bamboo using microwave liquefaction combined with chemical treatment and ultrasonication. Carbohydrate polymers, 151, 725-734.
    45.Supian, M. A. F., Amin, K. N. M., Jamari, S. S., & Mohamad, S. (2020). Production of cellulose nanofiber (CNF) from empty fruit bunch (EFB) via mechanical method. Journal of Environmental Chemical Engineering, 8(1), 103024.
    46.Rambabu, N., PAnthapulakkal, S., Sain, M., & Dalai, A. K. (2016). Production of nanocellulose fibers from pinecone biomass: evaluation and optimization of chemical and mechanical treatment conditions on mechanical properties of nanocellulose films. Industrial Crops and Products, 83, 746-754.
    47.Zhao, J., Zhang, W., Zhang, X., Zhang, X., Lu, C., & Deng, Y. (2013). Extraction of cellulose nanofibrils from dry softwood pulp using high shear homogenization. Carbohydrate Polymers, 97(2), 695-702.

    無法下載圖示 全文公開日期 2031/08/30 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE