簡易檢索 / 詳目顯示

研究生: 方瑞穎
Ruei Ying Fang
論文名稱: 運用領結天線之平面電路至矩形波導轉接
Planar Circuits to Rectangular Waveguide Transitions Using Bow-Tie Antenna
指導教授: 王蒼容
Chun-Long Wang
口試委員: 吳瑞北
Ruey-Beei Wu
馬自莊
Tzyh-Ghuang Ma
曾昭雄
none
學位類別: 碩士
Master
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2007
畢業學年度: 95
語文別: 英文
論文頁數: 46
中文關鍵詞: 槽線共面波導領結天線矩形波導轉接
外文關鍵詞: slotline, CPW, bow-tie antenna, recrangular waveguide, transition
相關次數: 點閱:235下載:6
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

為了實現寬頻的槽線至矩形波導轉接,本篇論文採用具有寬頻特性的有限長度之領結式天線,來實現X-band (8.2-12.4 GHz)全頻帶的槽線到矩形波導轉接、其分析、設計與量測結果皆在本文中有詳細的探討。經過適切的設計,這個轉接可以達成寬頻、緊緻和構造簡單的目標。在整個X-band的範圍內,單一個轉接的模擬插入損耗皆小於 0.1 dB,反射損耗皆大於 15 dB,可謂一個相當寬頻的轉接。
為了驗證這個結果,我們製作了一組背對背的轉接結構,在整個X-band的範圍內,其模擬和量測的結果大致上還吻合;其模擬和量測的插入損耗分別小於 0.25 dB和 0.4 dB,其模擬和量測的反射損耗分別大於 13 dB和 15 dB,可謂相當的不錯一個設計。
另外,我們使用設計好的槽線至矩形波導轉接,結合共面波導至槽線的轉接,完成一個寬頻的共面波導至矩形波導轉接。在整個X-band的範圍內,其模擬的反射損耗皆在 14 dB以上,其穿透損耗皆小於 0.2 dB,亦可謂一個相當寬頻的轉接。


In order to realize a broadband slotline-to-rectangular waveguide transition, we adopt a truncated bow-tie antenna, which possess a broadband characteristic. This transition is designed in X-band (8.2-12.4 GHz) to make the insertion loss as small as possible and the return loss as large as possible in the full band of X-band. A complete analysis, design procedure, and measurement verification are discussed in the following contents of this thesis. Through proper design, the simulation results show a wideband response for a single transition with a insertion loss smaller than 0.1 dB and a return loss larger than 15 dB.
In order to verify our results, we fabricate a back to back transition composing of two single transitions connected back to back. The simulation and measurement results of the back to back transition agree well in the full band of X-band. The simulation and measurement insertion losses are smaller than 0.25 dB and 0.4 dB in the full band of X-band, respectively and the simulation and measurement return losses are larger than 13 dB and 15 dB, respectively.
While the wideband slotline-to-rectangular waveguide transition is accomplished, it is used to implement a wideband CPW-to-rectangular waveguide transition by integrating it with a CPW-to-slotline transition. The simulation results show that the return loss is larger than 14 dB and the insertion loss is smaller than 0.2 dB over the entire X-band, which means that a wideband performance could be easily achieved by this structure, also.

Chapter 1 Introduction ……….……………………………1 1.1 Motivation and Objective ……………………………………1 1.2 Literature Survey………………………………………………2 1.3 Contributions ………………………………………………5 1.4 Discourse Overview …………………………………………5 Chapter 2 Analysis of Slotline to Rectangular Waveguide Transition………………………………………13 2.1 Introduction to the Truncated Bow-Tie Antenna ……………13 2.2 Transition Topology …………………………………………13 2.3 Transition Analysis and Design in the X-Band ………………14 2.3.1 Determination of the flare angle of Truncated Bow-Tie Antenna…14 2.3.2 Parameters Study ……….………………………………15 2.4 Experiment and Measurement ………………………………17 2.5 Deviation of measurement results ……………………………18 2.5.1 Fabrication error ……………….………………………18 2.5.2 Substrate Effect ………………………………………18 2.6 Summery...……………………………………………………19 Chapter 3 Analysis of CPW to Rectangular Waveguide Transition………………………………………35 3.1 Transition Topology …………………………………………35 3.2 Transition Design in the X-Band …………………………36 3.3 Summery ……..………………………………………………37 Chapter 4 Conclusions ……………………………………43 References …………………………………………………45

[1] G.E. Ponchak and R. N. Simons, " A new rectangular waveguide to coplanar waveguide transition", IEEE MTT-S Int. Microwave Symp. Dig., vol. 1, pp. 491 -492, May 1990.
[2] V. S. Möttönen and A. V. Räisänen, “Novel wideband coplanar waveguide-to-rectangular waveguide transition,” IEEE Trans. Microw. Theory Tech., vol. 52, no. 8, pp. 1836–1842, Aug. 2004.
[3] C. F. Hung, A. S. Liu, C. H. Chien, C. L. Wang, and R. B. Wu, “Bandwidth enhancement on waveguide transition to conductor backed CPW with high dielectric constant substrate,” IEEE Microw. Wireless Compon. Lett. vol. 15, no. 2, pp. 128-130, Feb. 2005.
[4] T. H. Lin and R. B. Wu, “CPW to waveguide transition with tapered slotline probe,” IEEE Microw. Wireless Compon. Lett., vol. 11, no. 7, pp. 314–316, Jul. 2001.
[5] V. S. Möttönen, “Wideband coplanar waveguide-to-rectangular waveguide transition using fin-line taper,” IEEE Microw. Wireless Compon. Lett., vol. 15, no. 2, pp. 119-121 Feb. 2005.
[6] N. Kaneda, Y. Qian, and T. Itoh, “A broadband CPW-to-waveguide transition using quasi-Yagi antenna,” IEEE Trans. Microw. Theory Tech., vol. 47, no. 12, pp. 2562-2567, Dec. 1999.
[7] Grabherr, Wilfried; Menzel, Wolfgang, “A new transition from microstrip line to rectangular waveguide”, European Microwave conference, vol.2, pp.1170 – 1175, Oct. 1992.
[8] N. Kaneda, W. R. Deal, Y. Qian, R. Waterhouse, and T. Itoh, “A broad-band planar quasi-Yagi antenna,” IEEE Trans. Antennas Propag., vol. 50, no. 8, pp. 1158-1160, Aug. 2005.
[9] Y. Qian, W. R. Deal, N. Kaneda and T. Itoh, “Microstrip-fed quasi-Yagi antenna with broadband characteristics,” Electron. Lett., vol.34, Issue 23, pp.2194–2196, Nov. 1998.
[10] J. Sor, Yongxi Qian and T. Itoh, “Coplanar waveguide fed quasi-Yagi antenna,” Electron. Lett., vol.36, Issue 1, pp. 1–2, Jan. 2000.
[11] A. A. Eldek, A. Z. Elsherbeni, and C. E. Smith, “Wide-band modified printed bow-tie antenna with single and dual polarization for c- and X-band applications,” IEEE Trans. Antennas Propag., vol. 53, no. 9, pp. 3067–3072, Sep. 2005.
[12] Y. D. Lin and S. N. Tsai, "Coplanar waveguide-fed uniplanar bow-tie antenna", IEEE Trans. Antennas Propag., vol. AP-45, pp.305-306, Feb. 1997.
[13] A.S. Andrenko, ” Comparative study of wideband properties of planar solid and strip fractal bow-tie dipoles”, Wireless Communication and Applied Computational Electromagnetics, pp. 178 – 181, Apr. 2005
[14] W. L. Stutzman and G. A. Thiele, Antenna Theory and Design, 2nd ed., New York: John Wiley & Sons, Inc., 1998.
[15] C. A. Balanis, Antenna theory analysis and design 2nd ed., New York: John Wiley & Sons, Inc., 1997
[16] K. Kiminami, A. Hirata, and T. Shiozawa, “Double-sided printed bow-tie antenna for UWB communications”, IEEE Antennas Wireless Propag. Lett., vol. 3, pp. 152-153, 2004.
[17] A. A. Lestari, A. G. Yarovoy, and L. P. Ligthart, “A double-sided rounded bow-tie antenna (DSRBA) for UWB communication,” IEEE Antennas Wireless Propag. Lett., vol. 5, no. 5, Dec. 2006.
[18] K. Y. Yazdandoost and R. Kohno, “Bow-tie antenna for UWB communication frequency,” IEEE AP-S Int. Symp. Dig., vol. 3, pp. 2520–2523, Jun. 2004.
[19] A. A. Lestari, A. G. Yarovoy, and L. P. Ligthart, “Adaptive wire bow-tie antenna for GPR applications,” IEEE Trans. Antennas Propag., vol. 53, no. 5, pp. 26–35, May. 2005.
[20] C. M. Jong van Coevorden, A. R. Bretones, M. F. Pantoja, F. J. García Ruiz, S. G. García, and R. G. Martín, “GA design of a thin-wire bow-tie antenna for GPR applications,” IEEE Trans. Geosci. Remote Sens., vol. 44, no. 4, pp. 1004-1010, Apr, 2006.
[21] D. Uduwawala, M. Norgren, P. Fuks, and A. W. Gunawardena, “A deep parametric study of resistor-loaded bow-tie antennas for ground-penetrating radar applications using FDTD”, IEEE Trans. Geosci. Remote Sens., vol. 42, no. 4, pp. 732-742, Apr. 2004.

QR CODE