簡易檢索 / 詳目顯示

研究生: 王嘉俊
Chia-Chun Wang
論文名稱: 三頻帶六階共振腔除二除頻器之設計與熱載子之研究
A Triple-band Divide-by-2 Injection-Locked Frequency Divider Using 6th-Order Resonator And Hot Carrier Effect Research
指導教授: 張勝良
Sheng-Lyang Jang
口試委員: 徐敬文
Ching-Wen Hsue
黃進芳
Jhin-Fang Huang
馮武雄
Wu-Shiung Feng
學位類別: 碩士
Master
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2015
畢業學年度: 103
語文別: 英文
論文頁數: 106
中文關鍵詞: 注入式鎖定除頻器熱載子應力
外文關鍵詞: injection lock frequency divider, hot carrier, stress
相關次數: 點閱:208下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本論文主要描述除二注入鎖定除頻器,其分別為“三頻帶六階共振腔除二除頻器”、“除二除頻器之熱載子研究”。所有電路皆採用台積電所提供之點一八微米互補式金氧半製程所製造。
三頻帶除二除頻器運用可變電容上的電壓切換頻帶,在每個頻帶中都能實現除二除頻,因此三個頻帶所有的除頻範圍遠比單一頻帶除頻器大,在電源1V注入功率大小為0dBm的訊號時高頻除頻鎖定範圍為1.6GHz(14.95%);中頻除頻鎖定範圍為3.1GHz(42.17%);低頻除頻鎖定範圍為1.8GHz(40%)。
對於熱載子研究以往應用在一般除二除頻器,一般的除二除頻器電路有直流與交流成分,而此研究加入開關在一般除二除頻器上,純粹探討直流對除二除頻器所造成之效應。


A triple-band divide-by-2 LC injection-locked frequency divider (ILFD) was implemented in the TSMC 0.18 μm 1P6M CMOS process. The divide-by-2 ILFD uses a cross-coupled nMOS pair and a 6th order LC resonator. At the drain-source bias of 1 V and the incident power of 0 dBm the high-band, middle-band and low-band locking range of the divide-by-2 ILFD are 1.6GHz (40%) from 9.9 to 11.5 GHz, 3.1GHz (42.17%) from 5.8 to 8.9 GHz and 1.8GHz (14.95%) from 3.6 to 5.4 GHz respectively .The core power consumption is 21.54 mW. The die area is 1.198×1.155 mm2

A divide-by-2 injection-locked frequency divider (ILFD) is designed for hot-carrier stress experimental study. The ILFD is made of a capacitive cross-coupled voltage-controlled oscillator and capacitive direct-injection MOSFET composite that consist of two MIM capacitors in series with injection MOSFETs. The cross-coupled transistors are respectively dc-stressed, and degraded drain current is found. The degradation due to dc current in locking range of the ILFD was found, This degradation is contributed by MERELY the cross-coupled MOSFETs.

中文摘要 ABSTRACT 誌 謝 TABLE OF CONTENTS LIST OF FIGURES LIST OF TABLE CHAPTER 1. INTRODUCTION 1.1 BACKGROUND 1.2 THESIS ORGANIZATION CHAPTER 2. OVERVIEWS OF VOLTAGE-CONTROLLED OSCILLATORS 2.1 INTRODUCTION 2.2 THE OSCILLATOR THEORY 2.3 SORTS OF OSCILLATORS 2.3.1 RESONATORLESS OSCILLATORS 2.3.2 LC-TANK OSCILLATORS 2.4 DESIGN CONCEPTS OF VOLTAGE-CONTROLLED OSCILLATORS 2.4.1 VCO CHARACTERISTIC PARAMETERS 2.5 PARALLEL RLC TANK 2.5.1 QUALITY FACTOR 2.5.2 INDUCTOR AND TRANSFORMER 2.5.3 CAPACITORS AND VARACTORS 2.5.4 RESISTORS 2.6 INJECTION LOCKING FREQUENCY DIVIDER 2.6.1 PRINCIPLE OF INJECTION LOCKED FREQUENCY DIVIDER 2.6.2 LOCKING RANGE 2.6.3 SWITCH ILFD 2.7 HOT-CARRIER EFFECTS CHAPTER 3. A TRIPLE-BAND DIVIDE-BY-2 INJECTION-LOCKED FREQUENCY DIVIDER USING 6TH-ORDER RESONATOR 3.1 INTRODUCTION 3.2 CIRCUIT DESIGN 3.3 MEASUREMENT AND DISCUSSION CHAPTER4. INVESTIGATION OF HOT-CARRIER DEGRADED INJECTION MOSFET ON THE PERFORMANCE OF INJECTION-LOCKED FREQUENCY DIVIDER 4.1 INTRODUCTION 4.2 CIRCUIT DESIGN 4.3 EXPERIMENT A. STRESS ON CROSS-COUPLED TRANSISTORS B. STRESS ON INJECTION TRANSISTORS CHAPTER5. CONCLUSION REFERENCES

[1] N. M. Nguyen, and R. G. Meyer, “Start-up and frequency stability in high-frequency oscillators,” IEEE Journal of Solid-State Circuits, vol. 27, pp. 810-820, May 1992.
[2] S. Smith, Microelectronic Circuit 4th edition, Oxford University Press 1998.
[3] B. Razavi, RF Microelectronics, Prentice Hall PTR, 1998.
[4] P.-C. Huang, M.-D. Tsai, H. Wang, C.-H. Chen, and C.-S. Chang, “A 114GHz VCO in 0.13μm CMOS technology,” IEEE International Solid-State Circuits Conference, vol. 1, pp.404-606, 6-10 Feb. 2005.
[5] B. Razavi, Design of Analog CMOS Integrated Circuits, Mc Graw Hill, 2001.
[6] T. H. Lee, The Design of CMOS Radio Frequency Integrated Circuits, Cambridge University Press 1998.
[7] J. Craninckx, and M. S. J. Steyaert, “A 1.8-GHz low-phase-noise CMOS VCO using optimized hollow spiral inductors,” IEEE Journal of Solid-State Circuits, vol. 32, pp. 736-744, May 1997.
[8] C. P. Yue, and S. S. Wong, “Design strategy of on-chip inductors for highly integrated RF systems,” Design Automation Conference, pp. 982-987, 21-25 June 1999.
[9] H. M. Greenhouse, “Design of planar rectangular microelectronic inductors,” IEEE Transactions on Parts, Hybrids, and Packaging, vol. 10, pp. 101-109, Jun 1974.
[10] J. R. Long, “Monolithic transformers for silicon RF IC design,” IEEE Journal of Solid-State Circuits, vol. 35, pp. 1368-1382, Sept. 2000.
[11] E. Frlan, S. Meszaros, M. Cuhaci, and J.Wight, “Computer-aided design of square spiral transformers and inductors,” in Proc. IEEE MTT-S, pp. 661-664, June 1989.
[12] M. W. Geen, G. J. Green, R.G. Arnold, J. A. Jenkins, and R. H. Jansen, “Miniature multilayer spiral inductors for GaAs MMICs,” Gallium Arsenide Integrated Circuit (GaAs IC) Symposium, pp. 303-306, 22-25 Oct. 1989.
[13] P. Andreani, and S. Mattisson, “On the Use of MOS Varactors in RF VCO’s,” IEEE Journal of Solid-State Circuits, vol. 35, pp. 905-910, June 2000.
[14] J. Craninckx and M. S. J. Steyaert, “A 1.75-GHz/3-V dual-modulus divide-by-128/ 129 prescaler in 0.7 um CMOS,” IEEE J. Solid-State Circuits, vol. 31, pp. 890-897, July 1996.
[15] [20] Q. Huang and R. Rogenmoser, “Speed optimization of edge-triggered CMOS circuits for gigahertz single-phase clocks,” IEEE J. Solid-State Circuits, vol. 31, pp. 456-463, Mar. 1996.
[16] [21] J. Lee and B. Razavi, “A 40 GHz frequency divider in 0.18μm CMOS technology,” IEEE J. Solid-State Circuits, vol. 39, pp. 594-601, Apr. 2004.
[17] [22] H. R. Rategh, and T.H. Lee, “Superharmonic injection-locked frequency dividers,” IEEE J. Solid-State Circuits, vol. 34, pp. 813-821, June 1999.
[18] [23] H. D. Wohlmuth and D. Kehrer, “A high sensitivity static 2:1 frequency divider up to 27 GHz in 120 nm CMOS,” IEEE European Solid State Circuits Conference (ESSCIRC), pp. 823-826, Sept. 2002.
[19] [24] M. Tiebout, “A 480 uW 2 GHz ultra low power dual-modulus prescaler in 0.25 um standard CMOS,” IEEE International Symposium on Circuit and System (ISCAS), vol. 5, pp. 741-744, May 2000.
[20] [25] H. Wu, and A. Hajimiri, “A 19 GHz 0.5 mW 0.35 μm CMOS frequency divider with shunt-peaking locking-range enhancement,” IEEE ISSCC Dig. Tech. Papers, pp. 412-413, Feb. 2001.
[21] [26] R. J. Betancourt-Zamora, S. Verma, and T. H. Lee, “1 GHz and 2.8 GHz CMOS injection- locked ring oscillator prescalers,” IEEE Symposium on VLSI Circuits, pp. 47-50, June 2001.
[22] [27] P. Kinget, R. Melville, D. Long, and V. Gopinathan, “An Injection Locking Scheme for Precision Quadrature Generation,” IEEE J. Solid-State Circuits, vol. 37, pp. 845-851, July 2002.
[23] [28] W. Z. Chen, and C. L. Kuo, “18 GHz and 7 GHz superharmonic injection-locked dividers in 0.25pm CMOS technology,” IEEE European Solid State Circuits Conference (ESSCIRC), pp. 89-92, Sept. 2002.
[24] [29] H. Wu, “Signal generation and processing in high-frequency/high-speed silicon- based integrated circuits,” PhD thesis, California Institute of Technology, 2003.
[25] [30] R. Adler, “A study of locking phenomena in oscillators,” Proc. IEEE, vol. 61, pp.1380-1385, Oct. 1973.
[26] S.-L. Jang, C.-W. Chang, J.-Y. Wun, and M.-H. Juang, ” Quadrature injection-locked frequency dividers using dual-resonance resonator,” IEEE Microw. Wireless Compon. Lett., vol. 21, no. 1, pp. 37-39, Jan. 2011.
[27] S.-L. Jang, L.-T. Chou, J.-F. Huang, and C.-W. Chang, ” A dual-band dual-resonance quadrature injection-locked frequency divider,” IEICE Trans. Electron., Vol.E94-C,No.8,pp.1336-1339, Aug. 2011.
[28] S.-L. Jang, Z.-H. Wu, C.-W. Hsue and H.-F. Teng,” Wide-locking range dual-band injection-locked frequency divider,” Microw. Opt. Technol. Lett. vol. 55, 10, pp. 2333–2337, October 2013
[29] S.-L. Jang, R.-K. Yang, C.-W. Chang, M.-H. Juang, and C.-C. Liu, ” Dual-band transformer-coupled quadrature injection-locked frequency dividers,” Microw. Opt. Technol. Lett., pp.1561-1564, July, 2011.
[30] S.-L. Jang, C.-C. Shih, C.-C. Liu, and M.-H. Juang, ” CMOS injection-locked frequency divider with two series-LC resonators,” Microw. Opt. Technol. Lett., pp.290-293, Feb., 2011.
[31] Y.-C. Kuo, A novel tripleband divider by two injection-locked frequency divider And low phase noise dualband PMOS VCO, MS thesis 2012.
[32] S. Tam, P.-K. Ko, and C. Hu, “Lucky-electron model of channel hot-electron injection in MOSFET’s,” IEEE Trans. Electron Devices. Vol. ED-31, No. 9. p. 1116-1125, 1986
[33] S.-S. Liu, S.-L. Jang, and C.-G. Chyau, " Compact LDD nMOSFET degradation model, " IEEE Trans. Electron Devices, Vol. 45, No. 7, pp.1538-1547, 1998.
[34] M. Tiebout, “A CMOS direct injection-locked oscillator topology as high-frequency low-power frequency divider,” IEEE J. Solid-State Circuits, vol. 39, pp. 1170 – 1174, July 2004.
[35] S.-L. Jang, J.-F. Huang, C.-C. Fu and M.-H. Juang, ” Experimental evaluation of hot-carrier stressed series-tuned injection-locked frequency divider,” Analog Integr Circ Sig Process (2014) 80:133–139.
[36] S.-L. Jang, and J.-H. Hsieh, ”RF performance degradation in CMOS divide-by-3 injection-locked frequency divider due to hot carrier Effects”, J. Low Power Electronics. Vol.9, No. 4, pp.484-489, Dec. 2013
[37] S.-L. Jang and T.-C. Fu, " Effects of hot-carrier stress on the RF performance of a 0.18μm MOS divide-by-4 LC injection-locked frequency divider," Fluct. Noise Lett. vol. 13, no. 2, 1450009-1 April, 2014.

無法下載圖示 全文公開日期 2020/07/28 (校內網路)
全文公開日期 本全文未授權公開 (校外網路)
全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
QR CODE