簡易檢索 / 詳目顯示

研究生: 簡嘉威
CHIA-WEI CHIEN
論文名稱: 合成含苯並咪唑基與六氟丙基之聚醯亞胺質子傳導膜及其性質研究
Synthesis and Characterization of Polyimides Containing Benzimidazolyl and Hexafluoropropyl Groups for Proton Exchange Membrane
指導教授: 陳燿騰
Yaw-Terng Chern
口試委員: 王健珍
Jane-Jen Wang
葉旻鑫
Min-Hsin Yeh
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2018
畢業學年度: 107
語文別: 中文
論文頁數: 119
中文關鍵詞: 中溫型質子傳導膜聚醯亞胺六氟丙基苯並咪唑基
外文關鍵詞: High-Temperature PEM, Polyimide, Hexafluoropropyl, Benzimidazolyl
相關次數: 點閱:236下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

由2,2-Bis(4-carboxyphenyl) hexafluoropropane與4-Nitro-o-phenylenediamine合成2,2-Bis(4-(2-(5-nitrobenzimidazolyl))phenyl)hexafluoropropane (6F/IM/NO2)二硝基化合物,再將6F/IM/NO2 還原成二胺單體2,2-Bis(4-(2-(5-aminobenzimidazolyl))phenyl)
hexafluoropropane (6F/IM/NH2)。
將6F/IM/NH2、2,2 ’-bis(2-benzimidazole)-4,4’- diaminobiphenyl (BP/IM/NH2)及其他芳香族二胺單體與六環酸酐NTDA合成在主鏈與側鏈含benzimidazole的聚醯亞胺(PI)共聚物,其固有黏度範圍在 0.56~1.44 dL/g 之間,均可塗佈成具韌性之薄膜,這些共聚物有好的熱安定性,於氮氣下10 %裂解溫度皆有450℃以上、以及有高的玻璃轉換溫度Tg (約在256~289℃),聚合物尚未摻雜磷酸的抗張強度91.9~140.9 MPa,但是當摻雜磷酸後,薄膜受到磷酸的膨潤,機械強度會大幅下降。藉由甲基側基進行交聯反應,形成交聯 PI 共聚物,交聯後 PI 共聚物因受交聯鍵結,形成緊密堆積高分子鏈,導致磷酸摻雜量下降,但仍能有足夠高的質子傳導度,並能維持好的機械性質,例如交聯後C10-6F4BPBI4F1DMB1 的抗張強度是6F4BPBI4F1DMB1的 1.6 倍。
  本研究所合成PI共聚物雖然有較低磷酸摻雜量,但它們的質子傳導度在較低的磷酸摻雜量下幾乎都比m-PBI高,例如6F4BPBI4F1.7DMB0.3在160℃有高的質子傳導度(235% H3PO4 uptake, 58.0 mS/cm),6F4BPBI4PF1.7DMB0.3在160℃有高的質子傳導度(249% H3PO4 uptake, 66.1 mS/cm) , 6F4BPBI4O1.7DMB0.3在160℃有高的質子傳導度(241% H3PO4 uptake, 55.1 mS/cm)皆高於m-PBI(280% H3PO4 uptake, 54.1 mS/cm),這結果顯示導入六氟丙基在主鏈與benzimidazole環在主鏈與側基有利於形成離子通道與提高質子傳導度,很有潛力應用於中溫型燃料電池的質子傳導膜。


Reaction of 2,2-Bis(4-carboxyphenyl) hexafluoropropane with 4-nitro-o-phenylenediamine in polyphosphoric acid gave 2,2-bis(4-(2-(5-nitrobenzimidazolyl))phenyl)hexafluoropropane (6F/IM/NO2), which was hydrogenated to get novel monomer of 2,2-bis(4-(2-(5-aminobenzimidazolyl))phenyl)hexafluoropropane (6F/IM/NH2).
A series of polyimides (PIs) containing main –chain and pendant benzimidazole groups were synthesized from 1,4,5,8-naphthalene tetracarboxylic dianhydride (NTDA), diamines which had benimidazole such as 6F/IM/NH2, 2,2 ’-bis(2-benzimidazole)-4,4’- diaminobiphenyl (BP/IM/NH2) and other aromatic diamines. The inherent viscosities in the range of 0.56~1.44 dL/g, and each of them could form tough and flexible films. The PIs exhibited high thermal stability with 10% decomposition temperature more than 450oC in nitrogen, and their glass transition temperature is at 256~289oC. These films exhibited good mechanical properties with tensile stress is 91.9~140.9 MPa. However, the mechanical properties of PI significantly decreased when phosphoric acid doping level increased. The mechanical properties of phosphoric acid doped PIs could be improved via crosslinking reaction of methyl group, cross-linked PI would form close packing, and it led to decrease of phosphoric acid doping level, but it could still maintain high proton conductivity and high mechanical properties. The tensile strength of C10-6F4BPBI4F1DMB1 in wet state was enhanced 1.6 times more than 6F4BPBI4F1DMB1. When PIs and m-BPI were in the similar phosphoric acid doping level PIs exhibited higher on proton conductivities at 160℃. For example, the proton conductivities of 6F4BPBI4F1.7DMB0.3 had relatively high proton conductivity at 160℃ (235% H3PO4 uptake, 58.0 mS/cm). 6F4BPBI4PF1.7DMB0.3 had relatively high proton conductivity at 160℃ (249% H3PO4 uptake, 66.1 mS/cm). 6F4BPBI4O1.7DMB0.3 also had high proton conductivity at 160℃ (241% H3PO4 uptake, 55.1 mS/cm). Thus, these polyimides (PIs) containing hexafluoropropyl on main chain and benzimidazole on main-chain and pendant could be the promising materials alternative to m-PBI membrane for medium-temperature fuel cells application because of they can easily form the ion channels and enhanced the proton conductivity.

摘要 Abstract 目錄 圖索引 表索引 第一章 緒論 1.1前言 1.2燃料電池的介紹 1.2.1 燃料電池的發展 1.2.2 燃料電池的特色 1.2.3 燃料電池的種類 1.2.4 燃料電池的原理及應用 1.3直接甲醇燃料電池(Direct Methanol Fuel Cell, DMFC )介紹 1.3.1 直接甲醇燃料電池的原理及構造 1.3.2直接甲醇燃料電池的核心 1.4中溫型燃料電池簡介 1.4.1 中溫型 (150~250 ℃) 燃料電池的優點 1.4.2 聚苯咪唑薄膜摻雜磷酸的質子傳導機制 1.5 交聯劑介紹 1.6 文獻回顧 1.7研究動機與研究內容 第二章 實驗 2.1實驗藥品 2.2聚醯亞胺共聚物實驗程序 2.2.1單體合成 2.2.2合成聚醯亞胺共聚物(PIs) 2.3 聚合物之物性與化性分析 第三章 結果與討論 3.1 單體與PIs 的合成 3.2固有黏度 3.3溶解度測試 3.4確認交聯反應 3.4.1 經DSC 量測與溶解度證明交聯 3.4.2 FT-IR分析 3.5熱性質分析 3.6 PI共聚合物組成對磷酸摻雜量的效應 3.7膨潤度的測試 3.8 質子傳導度分析 3.8.1溫度對質子傳導度的效應 3.8.2化學構造對質子傳導度的效應 3.9 機械性質量測 3.9.1薄膜機械性質量測 3.9.2摻雜磷酸薄膜機械性質量測 3.9.3 甲基交聯對質子傳導度與機械性質影響 3.10 氧化安定性測試 第四章 結論 第五章 參考文獻

1. 黃鎮江,燃料電池,滄海圖書有限公司,12,2008。
2. T. Ozgur, A. C. Yakaryılmaz, Int. J. Hydrogen Energy, 43, 17995, 2018.
3. S. K. Kamarudin, F. Achmad, W. R. W. Daud, Int. J. hydrogen energy, 34,
6902, 2009.
4. M. Z. F. Kamarudin, S. K. Kamarudin, W. R. W. Daud, M. S. Masdar,
Renewable and Sustainable Energy Reviews, 24, 557, 2013.
5. S. Surampudi, S. R. Narayanan, E. Vamos, J. Power Sources, 47, 377, 1994.
6. M. P. Hogarth, G. A. Hards, Platinum Maters Rev., 40, 150, 1996.
7. J. Braz. Chem. Soc., 14, 503, 2003
8. C. H. Park, C. H. Lee, M. D. Guiver, Y. M. Lee, Prog. Polym. Sci., 36,
1443, 2011.
9. B. Smitha, S. Sridhar, A. A. Khan, J. Membr. Sci., 259, 10, 2005.
10. H. J. Kim, T. W. Lim, Y. S. Park, K. S. Shin, J. C. Lee, Macromol. Chem.
Phys., 208, 2293, 2007.
11. T. H. Kim, T. W. Lim, J. C. Lee, J. Power Source, 172, 172, 2007.
12. Q. F. Li, R. H. He, J. O. Jensen, N.J. Bjerrum, J. Electrochem. soc.,
150, 1599, 2003.
13. Y. L. Ma, J. S. Wainright, M. H. Litt, R. F. Savinell, J. Electrochem.
Soc., 151, 8, 2004.
14. H.L. Lin, Y.C. Chou, L. Yu, S.W. Lai, international journal of hydrogen
energy., 37, 386, 2012
15. Z. Yue, Y.B. Cai, S. Xu, Journal of Membrane Science, 501, 220, 2016
16. K. Vanherck, G. Koeckelberghs, I. Vankelecom, Progress in Polymer
Science, 38, 884, 2013
17. B. Xing, O. Savadogo, Journal of New Materials for Electrochemical
Systems, 2, 95, 1999.
18. M. Kawahara, J. Morita, M. Rikukawa, K. Sanui, N. Ogata, Electrochimica
Acta, 45, 1395, 2000.
19. J. C. Chen, P. Y. Chen, S. W. Lee, G. L. Liou, C. J. Chen, Y. H. Lan, K.
H. Chen, Reactive and Functional Polymers, 108, 122, 2016
20. J. Su, H. Pu, Z. Chang, D. Wan, Polymer, 53, 358, 2012
21. J. Chen, J. Wu, C. Lee, M. Tsai, K. Chen, Journal of Membran Science,
483, 149, 2015
22. C.Genies, R. Mercier, B. Sillion, N. Cornet, G. Gebel, and M.Pineri,
Polymer, 42, 359, 2001
23. Y. Yin, S. Hayashi, O. Yamada, H. Kita, and K. I. Okamoto, Macromolecular
rapid communications, 26, 696, 2005.
24. J. Li, S. Wang, F. Liu, X. Tian, X. Wang, H. Chen, T. Mao, Z. Wang,
internal journal of hydrogen energy, 4, 2018
25. 陳泰安,合成新型含苯咪唑側基之聚醯亞胺與含苯並唖唑側基之聚苯咪唑及其性質研究,台
灣科技大學化工系碩士論文,2014。
26. F. Wang, M. Hickner, Y.S. Kim, T.A. Zawodzindki, J.E. McGrath, J. Membr.
Sci., 197, 231, 2002

QR CODE