簡易檢索 / 詳目顯示

研究生: 林祐任
You-Ren Lin
論文名稱: 基於影像處理之三輪車避障系統實現
Implementation of Vision-based Obstacle Avoidance System for Three-wheeled Vehicles
指導教授: 郭重顯
Chung-Hsien Kuo
口試委員: 修芳仲
Fang-Jung Shiou
蘇國和
Kuo-Ho Su
梁書豪
Shu-hao Liang
學位類別: 碩士
Master
系所名稱: 電資學院 - 電機工程系
Department of Electrical Engineering
論文出版年: 2020
畢業學年度: 108
語文別: 中文
論文頁數: 60
中文關鍵詞: 影像避障無人三輪車影像定位軌跡追蹤
外文關鍵詞: image obstacle avoidance, unmanned tricycle, image 3D ranging, trajectory tracking
相關次數: 點閱:380下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本論文基於影像定位與自主控制技術,研發一動態路徑規劃與即時避障系統,分為:「機電動力控制與轉向系統」、「影像定位系統」以及「車輛決策系統」三部分來進行討論。「機電動力控制與轉向系統」以改裝市售電動三輪車作為本論文實驗驗證之無人駕駛平台,結合霍爾感測器(Hall Sensor)與PD(Proportional–Derivate)即時控制,使系統具有良好的即時性與準確性;「影像定位系統」則利用攝影機與目標物底部位置之光學幾何關係及深度學習技術,定位標的物及人所在位置;「車輛決策系統」則為使用人工位能場(Artificial Potential Field, APF)方式做及時規劃行駛路徑,並透過三角定位與單標的物方式推算車輛位置及車輛航向角方向角來進行路徑追蹤,使自主導航三輪車得以自動且精準地在各種條件下運作,最後搭配人性化操作介面,使用者能夠在介面中查看車輛位置、標的物位置與障礙物位置以及相關參數。
為了測試定位技術與避障路徑規劃技術之平台,在相同實驗條件下本文多次測試S型閃避標的物以及直線行駛時閃避行人,經過驗證,皆可即時規劃出適合的路徑並準確地完成閃避標的物及人,。故本實驗之自駕平台能夠在行駛狀態下達到自動避障功能。


This study focused on creating one dynamic path planning and real-time obstacle avoidance system. The whole architecture are divided into three parts: “electromechanical control and steering module”, “vehicle locating system with computer vision” and “vehicle decision system”. In the first part, we modified the electric tricycle as the autonomous vehicle for the confirmation purpose. With Hall sensor and Proportional-Derivate control included, the platform can be even more precise and immediate. The second part, using the optical relationship between camera and the bottom of the target cooperate with deep learning technology to locate the precise position of target and pedestrian. The third part of the system utilize Artificial Potential Field to execute the real-time path planning. Also, implement triangular positioning and single target recognition to reckon vehicle position and heading angle. Thus, it can make the autonomous system much precise under various condition. At last, establishing friendly user interface and providing the information and parameters to the current status.
In order to evaluate the accuracy and stability of this system, testing several S-curve avoidances with targets and pedestrian avoidance in straight under the same condition. According to the experiment, this system can plan the suitable and accurate path and then avoid the obstacles perfectly. The result was capable and convinced.

指導教授同意書 i 口試委員會審定書 ii 致謝 iii 摘要 iv Abstract v 目錄 vi 表目錄 viii 圖目錄 ix 第一章 緒論 1 1.1研究背景與動機 1 1.2研究目的 2 1.3文獻回顧 3 1.3.1物件偵測 3 1.3.2車輛定位 5 1.3.3路徑規劃 7 1.4論文架構 10 第二章 實驗平台與控制設計 11 2.1實驗平台 11 2.2轉向運動學 17 2.3顯示介面 18 第三章 系統流程與設計 19 3.1影像定位標的物及人 19 3.2車輛決策控制 25 3.2.1避障軌跡規劃 25 3.2.2視覺車輛定位 27 3.2.3路徑追蹤 33 3.3車輛底層控制 36 第四章 實驗結果分析 38 4.1視覺定位實驗 38 4.2車輛定位實驗 41 4.3避障系統實驗 45 第五章 結論與未來研究 46 5.1結論 46 5.2未來研究方向 46 參考文獻 47

[1]A. Alam and Z. Jaffery, “A computer vision system for detection and avoidance for automotive vehicles,” Annual IEEE India Conference (INDICON), pp. 1–6, 2015.
[2]Y. Huang and S. Liu, “Multi-class obstacle detection and classification using stereovision and improved active contour models,” IET Intelligent Transport Systems, vol. 10, issue. 3, pp. 197–205, 2016.
[3]V. D. Nguyen, H. V. Nguyen, D. T. Tran, S. J. Lee and J. W. Jeon, “Learning Framework for Robust Obstacle Detection, Recognition, and Tracking,” IEEE Transactions on Intelligent Transportation Systems, vol. 18, issue. 7, pp. 1633–1646, 2017.
[4]Y. Tsai, K. Chen, Y. Chen and J. Cheng, “Accurate and fast obstacle detection method for automotive applications based on stereo vision,” International Symposium on VLSI Design, Automation and Test (VLSI-DAT), pp.1–4, 2018.
[5]O. Kaiwartya, Y. Cao, J. Lloret, S. Kumar, N. Aslam, R. Kharel, A. H. Abdullah, R. R. Shah, “Geometry-based Localization for GPS Outage in Vehicular Cyber Physical Systems,” IEEE Transactions on Vehicular Technology, vol. 67, issue. 5, pp. 3800–3812, 2018.
[6]K. Sundar, S. Misra and S. Rathinam, “Routing unmanned vehicles in GPS-denied environments,” IEEE International Conference on International Conference on Unmanned Aircraft Systems, pp. 4579–4591, 2017.
[7]D. Cui, J. Xue and N. Zheng, “Real-Time Global Localization of Robotic Cars in Lane Level via Lane Marking Detection and Shape Registration,” IEEE Transactions on Intelligent Transportation Systems, vol. 17, issue. 4, pp. 1039–1050, 2016.
[8]K. Jo, Y. Jo and J. K. Suhr, “Precise Localization of an Autonomous Car Based on Probabilistic Noise Models of Road Surface Marker Features Using Multiple Cameras,” IEEE Transactions on Intelligent Transportation Systems, vol. 16, issue. 6, pp. 3377–3392, 2015.
[9]Y. Gu, Y. Wada, L. Hsu and S. Kamijo, “Vehicle self-localization in urban canyon using 3D map based GPS positioning and vehicle sensors,” IEEE Conferences on Connected Vehicles and Expo , pp. 792–798, 2014.
[10]C. Kuo, H. Chou, S. Chi and Y. Lien, “Vision-Based Obstacle Avoidance Navigation with Autonomous Humanoid Robots for Structured Competition Problems,” IJHR International Journal of Humanoid Robotics, vol. 10, no. 3, pp. 1–36, 2013.
[11]J. Park, JY. Kim, BC. Kim and S. Kim ,“Global Map Generation using LiDAR and Stereo Camera for Initial Positioning of Mobile Robot,” International Conference on Information and Communication Technology Robotics (ICT-ROBOT), pp. 1–4,2018.
[12]I. Chabini and S. Lan, “Adaptations of the A* algorithm for the Computation of Fastest Paths in Deterministic Discrete-Time Dynamic Networks,” IEEE Transactions on Intelligent Transportation Systems, vol. 3, no. 1, pp. 60–74, 2002.
[13]張傑,「以改良的A*演算法規劃較佳導引路徑之研究」,碩士學位論文,大同大學,民國98年。
[14]張書豪,「具自主導航與避障之嵌入式移動機器人控制系統開發」,碩士學位論文,國立臺灣科技大學,民國99年。
[15]W. Danwei and Q. Feng, “Trajectory planning for a four-wheel-steering vehicle,” in Robotics and Automation, 2001. Proceedings 2001 ICRA. IEEE International Conference on, 2001, pp. 3320-3325 vol.4.
[16]X. Guangyan and W. Danwei, “Full State Tracking of a Four-Wheel-Steering Vehicle based on Output Tracking Control Strategies, ” in Control, Automation, Robotics and Vision, 2006. ICARCV '06. 9th International Conference on, 2006, pp. 1-6.
[17]A. Cherubini, F. Spindler, and F. Chaumette, “Autonomous visual navigation and laser-based moving obstacle avoidance,” IEEE Transactions on Intelligent Transportation Systems, vol. 15, issue. 5, pp. 2101–2110, 2014.
[18]J. Lee, B.Y. Kang, and D.W. Kim, “Fast genetic algorithm for robot path planning,” Electronics Letters, vol. 49, pp. 1449–1451, 2013.
[19]J.A. Oroko and G.N. Nyakoe, “Obstacle avoidance and path planning schemes for autonomous navigation of a mobile robot: A Review”, Proceedings of the 2012 Mechanical Engineering Conference on Sustainable Research and Innovation, vol. 4, pp. 314-318, 2012.
[20]D. Cong, C. Liang, Q. Gong, X. Yang and J. Liu, “Path Planning and Following of Omnidirectional Mobile Robot Based on B-spline,” Chinese Control And Decision Conference (CCDC), pp. 4931–4936, 2018.
[21]E. Elsheikh, M. El-Bardini and M. Fkirin “Practical path planning and path following for a non-holonomic mobile robot based on visual servoing,” IEEE Information Technology, Networking, Electronic and Automation Control Conference, pp.401–406, 2016.
[22]J. Redmon and A. Farhadi, ‘‘YOLOv3: An incremental improvement,’’ 2018, arXiv:1804.02767. [Online]. Available: https://arxiv.org/abs/1804.02767

無法下載圖示 全文公開日期 2025/01/10 (校內網路)
全文公開日期 本全文未授權公開 (校外網路)
全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
QR CODE