簡易檢索 / 詳目顯示

研究生: 王有剛
Yu-Kang Wang
論文名稱: 奈米鑽石與矽奈米線酸鹼感測器之製作
The fabrication of pH sensor based on nanodiamond and silicon nanowires
指導教授: 黃柏仁
Bohr-Ran Huang
口試委員: 柯文政
Wen-Cheng Ke
張守進
Shoou-Jinn Chang
學位類別: 碩士
Master
系所名稱: 電資學院 - 光電工程研究所
Graduate Institute of Electro-Optical Engineering
論文出版年: 2015
畢業學年度: 103
語文別: 中文
論文頁數: 134
中文關鍵詞: 奈米鑽石氧電漿處理矽奈米線PSG摻雜酸鹼感測器
外文關鍵詞: nanodiamond, Oxygen plasma treatment, Silicon nanowires, PSG doping, pH sensor
相關次數: 點閱:333下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本論文探討分為兩部分,第一部分用微波電漿化學氣相系統(MPCVD)成長奈米鑽石薄膜,利用不同製程氣體比例(氬氣、氮氣、甲烷、氫氣)與氧電漿後處理改變薄膜品質;第二部分探討兩種製程之矽奈米線對pH靈敏度的影響。其一為利用硝酸去除銀粒子的製程處理,另一個為利用phosphorus silicate glass (PSG)作為矽奈米線摻雜源的製程處理。
氧電漿有清除表面無序石墨之功能,可提升品質與增加氧官能基,由實驗結果可得到Ar-N-NDFs/pyramid 以450W氧電漿處理後之品質較佳,酸鹼靈敏度可達65 mV/pH。
適當銀粒子修飾矽奈米線可以使氫離子更有效地吸附於矽奈米線上,實驗結果得知浸泡硝酸5秒鐘之製程處理得到較佳的酸鹼靈敏度58 mV/pH。
摻雜PSG於矽奈米線上形成p-n接面使氫離子更容易吸附於表面,當摻雜溫度965 oC 及5分鐘時可以得到較佳之酸鹼靈敏度68 mV/pH。


In this study, pH sensors were first fabricated by nanodiamond films(NDFs) synthesized by the MPCVD system with different ratio of Ar, N2, CH4, H2 gas flow. Oxygen plasma treatment was used for modifying the diamond film quality for pH sensitivity studies. In the second part, silicon nanowires(SiNWs) with two processing techniques, the nitric acid etching treatment and phosphorus silicate glass(PSG) doping treatment, were for pH sensitivity studies.
It is known that oxygen plasma could remove the disorder graphite and increase the oxygen functional group simultaneously. It is found that the pH sensitivity of Ar-N-NDFs/pyramid pH sensor increased from 40 to 65 mV/pH with 450 W oxygen plasma treatment.
It is also known that appropriate amount of metal particles could enhance the pH sensitivity. It is found that SiNWs modified by Ag particles with the nitric acid etching treatment increased the sensitivity from 38 to 58 mV/pH.
The PSG-doped SiNWs forming p-n junction would enhance H+ ion adsorption. It is indicated that the PSG-doped SiNWs exhibited the better pH sensitivity of 68 mV/pH with a 965 oC and 5 min PSG doping treatment.

中文摘要 英文摘要 致謝 目錄 圖目錄 表目錄 第一章 緒論 1.1 前言 1.2 研究動機 第二章 文獻回顧 2.1 鑽石特性簡介 2.2 CVD法奈米鑽石薄膜成長機制 2.3 奈米鑽石之成長方法 2.3.1 微波電漿化學氣相沉積法(Microwave Plasma Chemical Vapor Deposition System) 2.3.2 熱燈絲化學氣相沉積法(Hot filament CVD system) 2.3.3 射頻電將放電法(RF plasma glow discharge system) 2.4 矽金字塔結構之蝕刻機制 2.5 矽奈米線之蝕刻機制 2.6 pH酸鹼感測的相關理論 2.6.1 pH定義 2.6.2 能斯特方程式 2.6.3 氫離子吸附之理論與模型 2.7 矽奈米線與鑽石薄膜pH感測之應用 第三章 實驗方法 3.1 實驗設計與流程 3.2 矽晶圓清洗處理流程 3.3 矽金字塔結構之製備 3.4 矽奈米線結構製備 3.5 奈米鑽石薄膜之成長 3.5.1 以鑽石粉末震盪製備種子層 3.5.2 以微波電漿化學氣相沉積法(Microwave Plasma Chemical Vapor Deposition System)成長奈米鑽石薄膜 3.6 鑽石薄膜之氧電漿後處理 3.7 矽奈米線的製程處理處理 3.7.1 蝕刻完矽奈米線浸泡不同時間硝酸去除銀粒子的製程處理 3.7.2 蝕刻完矽奈米線去除銀粒子後以不同時間摻雜PSG 3.8 酸鹼感測元件之製作 3.9 分析方法及儀器介紹 3.9.1 掃描式電子顯微鏡(FE-SEM) 3.9.2 顯微拉曼光譜儀(Micro-Raman) 3.9.3 X射線光電子能譜儀(XPS) 3.9.4 酸鹼感測元件之量測 第四章 奈米鑽石酸鹼感測元件 4.1 以不同氣體組合成長奈米鑽石之製備與特性分析 4.1.1 表面型態分析 4.1.2 拉曼光譜儀分析 4.1.3 不同氣體組合成長奈米鑽石之酸鹼感測分析 4.1.4 NDF、N-NDF、Ar-N-NDF之酸鹼感測度 4.2不同功率之氧電漿處理平面上的氬氣-氮氣-奈米鑽石之特性分析 4.2.1 表面型態分析 4.2.2 拉曼光譜儀分析 4.2.3不同功率氧電漿處理奈米鑽石之酸鹼感測分析 4.2.4不同功率氧電漿對於平面結構奈米鑽石酸鹼感測度之效應 4.3 不同功率之氧電漿處理平面與金字塔上的氬氣-氮氣-奈米鑽石之特性分析 4.3.1 表面型態分析 4.3.2 拉曼光譜儀分析 4.3.3 X射線光電子能譜儀分析 4.3.4 不同功率氧電漿處理奈米鑽石之酸鹼感測分析 4.3.5 不同功率氧電漿對於金字塔結構奈米鑽石酸鹼感測度之效應 第五章 矽奈米線酸鹼感測元件 5.1 不同銀粒子殘留量對矽奈米線之特性分析 5.1.1 表面型態分析 5.1.2 拉曼光譜儀分析 5.1.3 X射線光電子能譜儀分析 5.1.4 不同銀粒子殘留量對矽奈米線之酸鹼感測分析 5.1.5 不同銀粒子殘留量對酸鹼感測度之影響 5.2 摻雜不同時間的PSG對矽奈米線之特性分析 5.2.1 表面型態分析 5.2.2 拉曼光譜儀分析 5.2.3 X射線光電子能譜儀分析 5.2.4 摻雜不同時間的PSG對矽奈米線之酸鹼感測分析 5.2.5 摻雜不同時間的PSG對酸鹼感測度之影響 第六章 結論與未來展望 6.1 結論 6.1.1奈米鑽石酸鹼感測元件 6.1.2不同銀粒子殘留量矽奈米線酸鹼感測元件 6.1.3摻雜不同時間PSG矽奈米線酸鹼感測元件 6.2 未來展望 參考文獻

[1] P.Bergveld, “Development of an ion-sensitive solid-state device for neurophysiological measurements”, IEEE Transactions on Biomedical Engineering, BME-17, pp. 70-71 (1970)
[2] J. Van der Spiegel, I. Lauks, P. Chan D. Babic, “The Extended Gate Chemical Sensitive Field Effect Transistor as Multi-Species Microprobe”, Sensors and Actuators B, Vol. 4, pp.291-298 (1983)
[3] Jung Lung Chiang, Jung Chuan Chou, Ying Chung Chen, “Study of the pH-ISFET and EnFET for Biosensor Applications”, Journal of Medical and Biological Engineering, Vol.21, No.3, pp. 135-146 (2001)
[4] S. A. Grot, G. Sh. Gildenblat, A. R. Badzian, “Diamond thin-film recessed gate field-effect transistors fabricated by electron cyclotron resonance plasma etching”, IEEE Electron Device Letters, vol13, P462-464(1992).
[5] K. E. Spear, J. P. Dismukes, Synthetic diamond, The Electrochemical Society Series (1993)
[6] S.-T. Lee, Z. Lin, X. Jiang, “CVD diamond films: nucleation and growth”, Materials Science and Engineering, pp. 123 (1999)
[7] Karl E. Spear, John P. Dismukes, Synthetic diamond, The Electrochemical Society Series, (1993)
[8] S. -Tong Lee, a, Zhangda Linb and Xin Jiangc, “CVD diamond films: nucleation and growth”, Materials Science and Engineering, pp. 123 (1999)
[9] Koji Kobashi, Diamond Films Chemical Vapor Deposition for Oriented and Heteroepitaxial Growth, 290, (2005).
[10] Gordon Davies, Properties and growth of diamond, London : IEE, INSPEC pp. 3 (1994)
[11] A. J. Neves, M. H. Nazaré, Properties, Growth and Applications of Diamond, EMIS Group, Institution of Electrical Engineers (2001)
[12] Gordon Davies, Properties and growth of diamond, London : IEE, INSPEC pp. 288 (1994)
[13] Gordon Davies, Properties and growth of diamond, London : IEE, INSPEC pp. 9 (1994)
[14] Gordon Davies, Properties and growth of diamond, London : IEE, INSPEC pp. 375 (2001)
[15] C. A. Spindt, I. Brodie, L. Humphrey, E. R. Westerberg, “Physical properties of thin-film field emission cathodes with molybdenum cones”, J. Appl. Phys, pp. 5248 (1976)
[16] G. G. P. v. Gorkom, A. M. E. Hoeberechts, “Performance of silicon cold cathodes”, J. Vac. Sci. Technol, pp.108 (1986).
[17] F. J. Himpsel, J. A. Knapp, J. A. V. Vechten, D. E. Eastman, “Quantum photoyield pf diamond (111) – A stable negative-affinity surface,” PhysRev ,pp. 624 (1979)
[18] Y. C. Chen, X. Y. Zhong, A. R. Konicek, D. S. Grierson, N. H. Tai, I. N. Lin, B. Kabius,J. M. Hiller, A. V. Sumant, R. W. Carpick, and O. Auciello, Synthesis and characterization of smooth ultrananocrystalline diamond films via low pressure bias-enhanced nucleation and growth, APPLIED PHYSICS LETTERS 92, 133113 (2008)
[19] Kane M. O’Donnell , Mark T. Edmonds , Juergen Ristein , Anton Tadich , Lars Thomsen ,Qi-Hui Wu , Chris I. Pakes , and Lothar Ley, Diamond Surfaces with Air-Stable Negative Electron Affi nity and Giant Electron Yield Enhancement, Adv. Funct. Mater., 23, 5608–5614, (2013)
[20] I-Nan Lin , Satoshi Koizumi , Joan Yater , and Franz Koeck, Diamond electron emission, MRS BULLETIN ,vol.39, ( 2014)
[21] Chehung Wei, Wei-Ju Pan, Min-Sheng Hung, The effects of substrate roughness and associated surface properties on the biocompatibility of diamond-like carbon films, Surface & Coatings Technology ,224, 8–17, (2014)
[22] Orlando Auciello , Pablo Gurman , Maria B. Guglielmotti ,Daniel G. Olmedo , Alejandro Berra , and Mario J. Saravia, Biocompatible ultrananocrystalline diamond coatings for implantable medical devices, MRS BULLETIN,vol. 39, (2014)
[23] C. Jany, F. Foulon, P. Bergonzo, A. Brambilla, F. Silva, A. Gicquel, T. Pochet, “Influence of the crystalline structure on the electrical properties of CVD diamond films”, Diamond and Related Materials,pp.741 (1996)
[24] Kaiyuan Yao, Chen Yang, Xining Zang, Fei Feng and Liwei Lin, CARBON SP2-SP3 TECHNOLOGY:GRAPHENE-ON-DIAMOND THIN FILM UV DETECTOR, MEMS, January 26 – 30, (2014).
[25] Prasanta Kumar Datta, James Sinclair Gray, Royal Society of Chemistry (Great Britain) , Surface Engineering: Fundamentals of coatings , Royal Society of Chemistry, pp. 219 (1993)
[26] H. Kawarada, M. Aoki, H. Sasaki, K. Tsugawa, “Characterization of hydrogen-terminated CVD diamond surfaces and their contact properties”, Diamond and related materials , vol3, P961-965 (1994).
[27] I. Z. Machi, J. E. Butler, S. H. Connell, B. P. Doyle, R. D. Maclear, J. P. F. Sellschop, E. Sideras-Haddad, D. B. Rebuli, “The distribution of hydrogen in polycrystalline CVD diamond”, Diamond and related materials, vol8, P1611-161 (1999).
[28] C. Lao, Y. Wang, S. Yang, “Depth profiles of boron and hydrogen in boron-doped diamond films and related performance characteristics”, Diamond and related materials, vol8, P1229-1233 (1999).
[29] J. Shirafuji, T. Sugino, “Electrical properties of diamond surfaces”, Diamond and Related Materials,Vol 5, P7006-713 (1996).
[30] Y. Otsuka, S. Suzuki, S. Shikama, T. Maki, T. Kobayashi, “Fermi level pinning in metal-insulator-diamond structures”, Jpn. J. Appl. Phys, vol34, PL551-554 (1995).
[31] Y. Otsuka, S. Suzuki, T. Maki, T. Kobayashi, “Observation of Capacitance Hunching at the Flat-Band-Voltage in Boron-Doped Diamond Metal/Insulator/Semiconductor Structure”, Jpn. J. Appl. Phys, vol35, PL1031-1034 (1996).
[32] S.Matusumoto, Y.Sato, M.Kamo, and N.Setaka,"Vapor Depositiion of Diamond Particles from Methane",Japanese J.Appl. Phys.Lett, p.1562 (1992).
[33] Suneet Arora, V.D. Vankar," Field emission characteristics of microcrystalline diamond films:Effect of surface coverage and thickness",Thin Solid Films, p.1963 (2006).
[34] S. Matsumoto, M. Hino, T. Kobayashi, "Synthesis of Diamond Films in a RF induction Thermal Plasma", Appl. Phys. Lett, p.737 (1987).
[35] Tao Wang, Li Xiang," Deposition of diamond/β-SiC/cobalt silicide composite interlayers to improve adhesion of diamond coating on WC–Co substrates by DC-Plasma Assisted HFCVD", Surface & Coatings Technology, 205 3027–3034 (2011).
[36] D.E. Meyer, R.O. Dillon, J.A. Woolam, "Radio-frequency Plasma Chemical Vapor Deposition Growth of Diamond", J. Vac. Sci. Technol., p.2325 (1989).
[37] S.J. Kim, B.K Jul, Y.H. Lee, B.S. Park, IEEE, p.526 (1996).
[38] G. Fedosenko, J. EngemannU, D. Korzec, " Deposition of diamond-like carbon films by a hollow cathode multi-jet rf plasma system", Surface and Coatings Technology, 133-134, 535-539, (2000).
[39] P.J. Holmes, “The Electrochemistry of Semiconductors”, Academic press, p.329 (1962)
[40] A.K. Chu, J.S. Wang, Z.Y. Tsai, and C.K. Lee “A simple and cost–effective approach for fabricating pyramids on crystalline silicon wafers”, Solar Energy Materials and Solar Cells, pp.1276-1280 (2009)
[41] I.Zubel and M. Kramkowska, “The effect of isopropyl alcohol on etching rate and roughness of (100) Si surface etched in KOH and TMAH solutions”, Sensors and Actuators a-Physical,pp.138-147 (2001)
[42] H. Lv, H. Shen, Y. Jiang, C. Gao, H. Zhao, and J. Yuan,“Porous-pyramids structured silicon surface with low reflectance over a broad band by electrochemical etching”,Applied Surface Science, pp.5451-5454 (2012)
[43] Y. Cao, A. Liu, H. Li, Y. Liu, F.Qiao, Z. Hu, and Y. Sang, “Fabrication of silicon wafer with ultra low reflectance by chemical etching method,”Applied Surface Science,pp.7411-7414 (2011)
[44] X. Li, B.K. Tay, P. Miele, A. Brioude, and D. Cornu,“Fabricarion of silicon pyramid/nanowire binary structure with superhydrophobicity”,Applied Surface Science,pp.7411-7414 (2011)
[45] W.K. Choi, J.T.L. Thong, P. Luo, C.M. Tan, T.H. Chua, and Y. Bai, “Characterisation of pyramid formation arising from the TMAH etching of silicon”,Sensors and Acruators a-Physical,pp.238-243 (1998)
[46] M.G. Kang, S.Tark, J.C. Lee, C.S. Son, and D.Kim,“Changes in efficiency of a solar cell according to various surface-etching shapes of silicon substrate”,Journal of Crystal,pp.14-18 (2011)
[47] H. Seidel, L. Csepregi, A. Heuberger, and H. Baumgartel, “Anisotropic etching of crystalline silicon in alkaline solution-PartⅠ. Orientation dependence and behavior of passivation layer,” Journal of The Electrochemical Society, vol, 137, no.11, pp. 3612-3626 (1990).
[48] H. Seidel, L. Csepregi, A. Heuberger, and H. Baumgartel,”Anisotropic etching of crystalline silicon in alkaline solution-PartⅡ. Influence of dopants, “ Journal of The Electrochemical Society, vol, 137, no.11, pp. 3626-3632 (1990).
[49] Mohammad Jellur Rahman, “Lecture Notes on Structure ofMatter,” Department of Physics BUET, Dhaka-1000.
[50] K. E. Bean, “Anisotropic Etching of Silicon,” IEEE Transactions on Electron Devices, vol. 25, pp. 1185-1193 (1978).
[51] K.-Q.P.Y.-J.Y.S.-P.G.a.J.zhu,”Synthesis of Large-Area Silicon Nanowire Arrays via Self-Assembling Nanoelectrochemistry,” Advanced Materials, pp.1164-1167 (2002)
[52] K.Q.Peng, Y.J. Yan, S.P. Gao, and J.Zhu,”Dendrite-assisted growth of silicon nanowires in electroless metal deposition”, Advanced Functional Materials, pp.127-132 (2003)
[53] K. Peng and J. Zhu, “Simultaneous gold deposition and formation of silicon nanowire arrays”, Journal of Electroanalytical Chemistry, pp.35-39 (2003)
[54] K.Peng and J.Zhu,”Morphological selection of electroless metal deposits on silicon in aqueous fluoride solution”, Electrochimica Acta, pp.2563-2568 (2004)
[55] R.S. Wanger and W.C. Ellis, "Vapor-Liquid-Solid mechanism of single crystal
甲、 growth", Applied Physics Letters, 4 (1964) 89-91.
[56] 張瀚丞,“在HF水溶液中氧化劑和溫度對矽奈米線形成速率及微結構之影響”,碩士論文, 材料科學及工程研究所, 國立成功大學, 台南, (2008)
[57] T. Qiu and P.K. Chu, “Self-selective electroless plating: An approach for fabrication of functional 1D nanomaterials,” Materials Science and Engineering: R: Reports, pp.59-77 (2008)
[58] H. Fang, X. Li, S. Song, Y. Xu, and J. Zhu, “Fabrication of slantingly-aligned silicon nanowire arrays for solar cell applications“, Nanotechnology, p.255703 (2008)
[59] D.K. Sanjay K. Srivastava, P.K. Singh, and Vikram Kumar,“SILICON NANOWIRE ARRAYS BASED ”BLACK SILICON”SOLAR CELLS”,IEEE pp.001851-001856 (2009)
[60] Rilbe H., “pH and Buffer Theory-A New Approach”, Willey Series in Solution Chemistry, pp. 1 (1996)
[61] D.E. Yates, S. Levine, T.W.Healy, “Site-Binding Model of the Electrical Double Layer at the Oxide/Water Interface”, J. Chem. Soc. Faraday Trans. I, Vol.70, PP. 1807-1818 (1974)
[62] A. Poghossian, M.H. Abouzar, A. Razavi , M. Backer , N. Bijnensc, O.A.Williams , K. Haenenc,d,W. Moritze, P.Wagnerc, M.J. Schoning “Nanocrystalline-diamond thin films with high pH and penicillin sensitivity prepared on a capacitive Si–SiO2 structure”, Electrochimica Acta Vol.54 PP.5981–5985 (2009).
[63] Kwang-Soup Songa, Yusuke Nakamuraa, Yuichi Sasaki, Munenori Degawa,Jung-Hoon Yang, Hiroshi Kawarada, “pH-sensitive diamond field-effect transistors (FETs) with directly aminated channel surface”, Analytica Chimica Acta, 573–574, 3–8(2006)
[64] E.L. Silva, A.C. Bastos, M.A. Neto, R.F. Silva, M.G.S. Ferreira, M.L. Zheludkevich, F.J. Oliveira,” Novel diamond microelectrode for pH sensing”, Electrochemistry Communications, 40, 31–34 (2014)
[65] Sungho Kim, Taiuk Rim, Kihyun Kim, Unsang Lee, Eunhye Baek, Hojoon Lee, Chang-Ki Baek,, M. Meyyappan, M. Jamal Deenbd and Jeong-Soo Lee, “Silicon nanowire ion sensitive field effect transistor with integrated Ag/AgCl electrode: pH sensing and noise characteristics”, Analyst, 136, 5012–5016 (2011)
[66] Tae-Eon Bae, Hyun-June Jang, Jong-Heon Yang, and Won-Ju Cho, “High Performance of Silicon Nanowire-Based Biosensors using a High‑k Stacked Sensing Thin Film”, ACS Appl. Mater. Interfaces, 5, 5214−5218 (2013)
[67] Jyun-Yi Li, Sheng-Po Chang, Shoou-Jinn Chang, and Tsung-Ying Tsai, ” Sensitivity of EGFET pH Sensors with TiO2 Nanowires”, ECS Solid State Letters, 3 (10) P123-P126 (2014)
[68] Richard L. CmCree, "Raman Spectroscopy for Chemical Analysis", John Wiley and Sons, NY, pp.1-5 (2000).
[69] Debabrata Pradhan, and I. Nan Lin, “Grain-Size-DependentDiamond-Nondiamond Composite Films:Characterization and Field-Emission Properties”, Applied materials&interfaces, Vol.1 NO.7, 1444-1450 (2009)
[70] K. J. Sankaran, K. Srinivasu, H. C. Chen, C. L. Dong, K. C. Leou, C. Y. Lee,N. H. Tai, and I. N. Lin, “Improvement in plasma illumination properties of ultrananocrystalline diamond films by grain boundary engineering”, JOURNAL OF APPLIED PHYSICS 114, 054304 (2013)
[71] Frederik Klauser , Slimane Ghodbane , Rabah Boukherroub , Sabine Szunerits ,Doris Steinmüller-Nethl , Erminald Bertel , Norbert Memmel,” Comparison of different oxidation techniques on single-crystal and nanocrystalline diamond surfaces “, Diamond & Related Materials, 19, 474–478, (2010)
[72] Teng-Yuan Dong, Wei-Ting Chen, Ching-Wen Wang, Chiao-Pei Chen, Chen-Ni Chen, Ming-Cheng Lin, Jenn-Ming Song, In-Gann Chenc and Tzu-Hsuan Kaoc, “One-step synthesis of uniform silver nanoparticles capped by saturated decanoate: direct spray printing ink to form metallic silver films”, Phys. Chem. Chem. Phys, 11, 6269–6275 | 6269 (2009)
[73] http://www.xpsfitting.com/2013/01/phosphorus.html

QR CODE