簡易檢索 / 詳目顯示

研究生: 林冠男
Quan-nan Lin
論文名稱: 密度泛涵理論在Pt15、Pt11Fe4和Pt11Co4團簇上對氧氣還原之研究
DFT Study of Oxygen Reduction Reaction on Pt15, Pt11Fe4 and Pt11Co4 clusters
指導教授: 黃炳照
Bing-Joe Hwang
口試委員: Tse-Chuan Chou
Tse-Chuan Chou
杜景順
Jing-Shan Do
江志強
Jyh-Chiang Jiang
陳俊維
Chen Chun-Wei
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2006
畢業學年度: 94
語文別: 英文
論文頁數: 94
中文關鍵詞: DFT氧氣還原PtCoPtFe
外文關鍵詞: PtCo and PtFe
相關次數: 點閱:191下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本研究以密度泛涵理論探討氧氣在Pt15、Pt11Fe4 和Pt11Co4 團簇上的還原反應。為了充分了解Co和Fe對氧氣還原的影響,氧分子及其反應中間體在團簇上的吸附性質亦做了相關的計算。本研究計算了反應中可能產生的物種在團簇上吸附的形態和能量進而得到反應的能量表面輪廓圖及相關反應能量。計算結果發現H2O2在團簇上的生成和吸附較不穩定說明了氧氣在Pt15、Pt11Fe4 和Pt11Co4 團簇上的還原是經由“平行”的反應路徑進行,其中又以“直接”的路徑為主。經由OOH在Pt11Fe4 和Pt11Co4上易分離的特性及團簇上Pt吸附點不易被O和OH 吸附的性質發現 Pt 與Co和Fe的合金對於氧氣還原優於Pt的原因為較容易的O-O斷鍵能力和較多的活性部位。


Density functional theory is used to study oxygen reduction reaction on Pt15, Pt11Fe4 and Pt11Co4 clusters. In this study, the adsorption properties of O2 molecule and intermediates in ORR are investigated in order to get insight into the influence of Co and Fe towards oxygen reduction reaction. Potential energy profiles and related energetics for ORR on Pt15, Pt11Fe4 and Pt11Co4 clusters are obtained by calculating the possible adsorbed species formed in ORR. The adsorption of H2O2 on Pt15, Pt11Fe4 and Pt11Co4 clusters is relatively unstable indicates that O2 reduction possibly proceed via a parallel pathway with the direct one as the dominant step. Pt forms alloys with Co or Fe benefit oxygen reduction reaction in terms of easy O–O dissociation and available active sites by the lower barrier of OOH dissociation and the dislike of OH and O adsorption on their Pt sites.

Abstract (Chinese) Abstract (English) Acknowledgement Contents List of Tables List of Figures Chapter 1: Introduction 1.1 General Aspects of Fuel Cell 1.2 Ab Initio Quantum Chemistry Study for Oxygen Reduction on Fuel CellCatalysts 1.2.1 Adsorption of Molecular Oxygen on Fuel Cell Catalysts 1.2.2 Oxygen Reduction Reaction Mechanism 1.2.3 The Motive of the Study Chapter 2: Theoretical Background 2.1 Ab Initio 2.2 Schrödinger Equation and Electron Wavefunction 2.3 Hartree-Fock Method 2.3.1 Hartree Approximation 2.3.2 Hartree-Fock 2.3.3 Self Consistent Field 2.4 Density Functional Theory 2.4.1 Hohenberg and Kohn Theorems 2.4.2 Kohn and Sham Method 2.4.3 Implementations of Kohn and Sham Method 2.5 Perturbation Theory 2.5.1 Rayleigh-Shrödinger Perturbation Theory 2.5.2 Møller-Plesset Pertubation Theory 2.6 Ab Initio Basis Set 2.6.1 Gaussian Type Orbitals 2.6.2 Spilt Valence Basis Set 2.6.3 Polarization and Diffuse Basis Set 2.6.3 Effective Core Potentials 2.7 Transition-State Theory Chapter 3: Computational method Chapter 4: Results and Discussion 4.1 Bare clusters 4.2 The adsorption properties of oxygen and intermediates on Pt15, Pt11Co4 and Pt11Fe4 clusters 4.2.1 O2 adsorption 4.2.2 OOH. Adsorption 4.2.3 O adsorption 4.2.4 OH adsorption 4.3 Reaction pathways of the ORR 4.3.1 ORR on Pt15 cluster 4.3.2 ORR on Pt11Fe4 and Pt11Co4 clusters Chapter 5: Conclusions Reverences

1. L. Carrette, K. A. Friedrich, and U. Stimming, Fuel Cell, 1, 1 (2001).
2. M. Winter, R. J. Brodd, Chem. Rev., 104, 4245 (2004).
3. N. M. Markovic, P.N. Ross, Surf. Sci. Rep., 45, 117 (2002)
4. R. Adzic, in: J. Lipkowski, P.N. Ross (Eds.), Electrocatalysis, Wiley/VCH, New York, Chapter 5 (1998).
5. J. O. M. Bockris, S.U.M. Khan, Surface Electrochemistry: A Molecular Level Approach, Plenum Press, New York, Chapter 3 (1993).
6. A. Damjanovic, in: O. J. Murphy, S. Srinivasan (Eds.), Electrochemistry in Transition: from the 20th to the 21st Century, Pt. III(9), Plenum Press, New York, (1992).
7. A. J. Appleby, J. Electroanal. Chem., 357, 117 (1993).
8. N. M. Markovic, P.N. Ross Jr., in: A. Wieckowski (Ed.), Interfacial Electrochemistry, Marcel Dekker Inc., New York, Chapter 46 (1999).
9. M. T. M. Koper, in: C.G. Vayenas, B.E. Conway, R. E. White (Eds.), Modern Aspects of Electrochemistry, No. 36, Kluwer Academic Publishers/ Plenum Press, New York, Chapter 2 (2003).
10. W. Schmickler, Annu. Rep. Prog. Chem. Sect. C 95, 117 (1999).
11. Z. Shi, J. Zhang, Z. S. Liu, H. Wang, D. P. Wilkinson, Electrochim. Acta, 51, 10, 1905 (2006).
12. R. R. Adžic, J. X. Wang, J. Phys. B, 102, 8988 (1998)
13. D.A. Outka, J. St¨ohr, W. Jark, P. Stevens, J. Solomon, R.J. Madix, Phys. Rev. B, 35, 4119 (1987).
14. H. Steininger, S. Lehwald, H. Ibach, Surf. Sci., 123, 1 (1982).
15. A. Eichler, J. Hafner, Phys. Rev. Lett., 79, 4481 (1997)
16. Y. Xu, A.V. Ruban, M. Mavrikakis, J. Am. Chem. Soc., 126, 4717 (2004).
17. A. Panchenko, M. T. M. Koper, T. E. Shubina, S. J. Mitchell, E. Roduner, J. Electrochem. Soc., 151, 12, A2016 (2004).
18. J. Roques, A. B. Anderson, J. Fuel Cell S. T., 2, 86 (2005).
19. T. Li, P. B. Balbuena, J. Phys. Chem. B, 105, 9943 (2001).
20. R. A. Aidik, A. B. Anderson, J. Electroanal. Chem., 528, 69 (2002).
21. T. Toda, H. Igarashi, H. Uchida, M. Watanabe, J. Electroanal. Chem., 146, 10, 3750 (1999).
22. A. Ruban, H.L. Skriver, J.K. Nørskov, Phys. Rev. B, 59, 15990 (1999).
23. P. B. Balbuena, D. Altomare, L. Agapito, J. M. Seminario, J. Phys. Chem. B, 107, 13671 (2003).
24. Z.D. Wei, F. Yin, L.L. Li, X.W. Wei, X.A. Liu, J. Electroanal. Chem. ,541, 185 (2003).
25. H. Wroblowa, Y. C. Pan, J. Razumney, J. Electroanal. Chem. Interfacial Electrochem., 69, 2, 195 (1976).
26. A. Damjanovic, V. Brusic, Electrochim. Acta, 12, 615 (1967).
27. E. Yeager, M. Razaq, D. Gervasio, A. Razaq, D. Tryk, in: D. Scheerson, D. Tryk, M. Daroux, X. Xing (Eds.), Structural Effects in Electrocatalysis and Oxygen Electrochemistry, Proc. vol. 92-11, The Electrochemical Society Inc., Pennington, NJ, 40 (1992).
28. A.B. Anderson, T.V. Albu, J. Am. Chem. Soc., 121, 11855 (1999).
29. A.B. Anderson, T.V. Albu, J. Electrochem. Soc. ,147, 11, 4229 (2000).
30. R. Jinnouchi, K. Okazaki, Microscale Thermophys. Eng., 715 (2003).
31. T. Li, P.B. Balbuena, Chem. Phys. Lett., 367, 439 (2003).
32. Y. Wang, P.B. Balbuena, J. Phys. Chem. B, 108, 4376 (2004).
33. Y. Wang, P.B. Balbuena, J. Phys. Chem. B, 109, 14896 (2005).
34. A. Szabo, and N. S. Ostlund, Modern Quantum Chemistry, McGraw-Hill, (1993).
35. C. J. Cramer, Essentials of Computational Chemistry, John Wiley & Sons Ltd (2002).
36. W. J. Hehre, L. Radom, P. v.R. Schleyer, J. A. Pople, Ab Initio Molecular Orbital Theory, John Wiley & Sons (1986).
37. J. K. Labanowski, Simplified and Biased Introduction to Density Functional Approaches in Chemistry, http://www.ccl.net/chemistry/index.shtml (1996).
38. P. J. Hay and W. R. Wadt, J. Chem. Phys., 82, 270 (1985).
39. P. E. M. Siegbahn, M. R. A. Blomberg, M.Wirstam nee Pavlov, and R. H. Crabtree, J. Biol. Inorg. Chem., 6, 460 (2001).
40. J. R. B. Gomes and F. Illas, Int. J. Mol. Sci., 2, 201 (2001).
41. J. C. Slater, Quantum Theory of Molecules and Solids, Vol. 4. The Self-Consistent Field for Molecules and Solids, McGraw-Hill, New York (1947).
42. V. Fock, Z. Phys., 61, 126 (1930).
43. A. D. Becke, Phys. Rev. A, 38, 3098 (1988).
44. S. H. Vosko, L. Wilk, and M. Nusair, Can. J. Phys., 58, 1200 (1980).
45. C. Lee, W. Yang, and R. G. Parr, Phys. Rev. B, 37, 785 (1988).
46. B. Miehlich, A. Savin, H. Stoll, and H. Preuss, Chem. Phys. Lett., 157, 200 (1989).
47. K. Huber and G. Herzberg, Molecular Spectra and Molecular Structure: Constants
of Diatomic Molecules, Vol. 4, Van Nostrand Reinhold, New York (1979).
48. H. Nakatsuji and H. Nakai, Chem. Phys. Lett., 197, 339 (1992).
49. P. H. Krupenie, J. Phys. Chem. Ref. Data, 1, 423 (1972).
50. M. E. Jacox, Vibrational and Electronic Energy Levels of Polyatomic Transient Molecules, AIP, Woodbury, NJ (1994).
51. T. Shimanouchi, Table of Molecular Vibrational Frequencies, Consolidated Vol. 1, NSRDS, NBS-39, Washington, DC (1972).
52. W. Wurth, J. Stohr, P. Feulner, X. Pan, K. R. Bauchspiess, Y. Baba, E. Hudel, G. Rocker, D. Menzel, Phys. ReV. Lett., 65, 2426(1990).
53. C. Puglia, A. Nilsson, B. Hernnas, O. Karis, P. Bennich, N. Martensson, Surf. Sci., 342, 119(1995).
54. J. L. Gland, B. A. Sexton, G. B. Fisher, Surf. Sci., 95, 587(1980).
55. Y. Wang, P.B. Balbuena, J. Chem. Theory Comput., 1, 935(2005)
56. Y. Tarchouna, M. Bahri, N. Jaidane, Z. Ben Lakhdar, and J. P. Flament, J. Chem.
Phys., 118, 1189(2003).
57. T. Jacob, R. P. Muller, W. A. Goddard III, J. Phys. Chem. B, 107, 9465(2003).
58. A. Michaelides and P. Hu, J. Chem. Phys., 114, 513(2001).
59. K. Bedürftig, S. Völkening, Y. Wang, J. Wintterlin, K. Jacobi, and G. Ertl, J. Chem. Phys., 111, 11147(1999).
60. J. O’M. Bockris, S. U. M. Khan, Surface Electrochemistry, Plenum Press: New York, 493(1993).
61. V. Stamenkovic, T. J. Schmidt, P. N. Ross, N. M. J. Markovic, J. Phys. Chem. B, 106, 11970(2002)
62. S. Nakanishi, Y. Mukouyama, K. Karasumi, A. Imanishi, N. Furuya, Y. Nakato, J. Phys. Chem. B, 104, 4181(2000)

QR CODE