簡易檢索 / 詳目顯示

研究生: 林晏婷
Yen-Ting Lin
論文名稱: 室內無線光通訊與感測系統: 設計與量測
Indoor Optical Wireless Communication and Sensing Systems: Design and Measurement
指導教授: 廖顯奎
Shien-Kuei Liaw
口試委員: 李三良
San-Liang Lee
馮開明
none
沈育霖
none
學位類別: 碩士
Master
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2016
畢業學年度: 104
語文別: 中文
論文頁數: 60
中文關鍵詞: 室內無線光通訊自由空間光通訊摻鉺光纖放大器氣體感測
外文關鍵詞: Gas sensing, Erbium-doped fiber amplifier, Indoor optical wireless communication, Free space optical communication
相關次數: 點閱:484下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文主要是將無線光通訊應用於室內短距離傳輸及室內氣體感測。本論文在室內短距離通訊傳輸實驗使用雷射作為傳輸光源,傳輸速率可達到10 Gbit/s,可提供室內個人電腦、電視、音響等裝置作高速光纖接取網路的應用。為了提升無線光通訊的收光效率,本論文結合單模光纖與多模光纖做設計及應用,在發射端使用單模光纖來傳輸訊號,而在接收端則使用多模光纖來耦光,降低耦光的難度。並針對實驗架構作傳輸品質的量測,分別量測傳輸距離在1、1.5、2及2.5公尺時的對光損耗及誤碼率,其量測結果在傳輸距離為1公尺時的對光損耗為0.2 dB,傳輸距離增加到2.5公尺時其對光損耗僅增加0.06 dB為0.26 dB;在誤碼率為10^-9的標準下,在傳輸距離為1公尺時的功率償付值為0.08 dB,傳輸距離增加到2.5公尺時的功率償付值增加0.12 dB為0.2 dB,最後將實驗架構用於室內影像訊號傳輸並成功接收。而室內氣體感測是利用不同氣體會吸收傳輸光源中不同波長的功率的特性,來感測氣體。本實驗使用C+L band的寬頻光源作為傳輸光源來感測氨氣,光源頻帶範圍為1520 nm到1610 nm,其中涵蓋氨氣的吸收頻譜1520 nm到1562 nm,並在接收端使用光頻譜分析儀來觀測吸收光譜的變化。在波長1531.13 nm時,感測氨氣濃度的靈敏度為0.0016 mW/ppm,線性度為0.9881。最後對實驗架構進行穩定度測試,量測結果其最大功率變動量為0.81 dB,平均功率變動量為0.4 dB。


    The themes of the thesis were to study indoor optical wireless for communication and gas sensing applications. For communication issue, a laser was modulated to transmit a data rate up to 10 Gbit/s for optical access networks in personal computer, TV and/or audio transmission. In order to enhance the power receiving efficiency in optical wireless, hybrid single-mode fiber (SMF) and multimode fiber (MMF) scheme are used to design the optical wireless system. The SMF acted a laser pigtail to transmit signal to free space while the MMF locates before the receiver to reduce the coupling loss from free space. For performance analysis, the alignment loss and bit error rate were measured in various link distances of 1, 1.5, 2, and 2.5 meters, respectively. The alignment loss for the link distances of 1 meter and 2.5 meters are 0.2 dB and 0.26 dB, respectively. Besides, the 10Gbit/s power penalty are 0.08 dB and 0.2 dB for 1 meter and 2.5 meters, respectively, when compare to back-to-back transmission. Another theme of this thesis was to investigate gas sensing for indoor. By selecting a broadband light source which emission spectrum partially overlapping with the absorption spectrum with gas under test. In our example, a C+L band light source operating in the wavelength range of 1535 nm to 1605 nm was used to monitor Ammonia (NH3). The sensitivity induced loss for NH3 concentration is 0.0016 mW/ppm at 1531.13 nm. For stable analysis, the output power at 1537.53 nm was measured for 5 minutes with 30 sec interval for each step. The average power fluctuation was 0.4 dB, mainly caused by that old broadband light source.

    摘要I AbstractII 致謝III 目錄IV 圖表索引VII 第一章緒論1 1.1前言1 1.2研究動機2 1.3文獻回顧3 1.4論文架構6 第二章無線光通訊原理7 2.1無線光通訊介紹7 2.2發射端8 2.2.1光源選擇8 2.2.2光纖準直器9 2.2.3透鏡設計10 2.3傳輸通道11 2.3.1大氣吸收12 2.3.2大氣散射12 2.4接收端15 2.4.1幾何損耗15 2.4.2耦合損耗16 2.5誤碼率與眼圖16 第三章室內無線光通訊設計與建構19 3.1對光系統設計19 3.1.1光路對準20 3.1.2光學移動平台22 3.2實驗系統建構24 3.2.1系統損耗24 3.2.2接續損耗25 3.2.3耦合效率27 3.3訊號傳輸量測28 3.3.1實驗架構28 3.3.2訊號傳輸量測結果30 3.4接收端長度量測34 3.5數位影像傳輸35 第四章室內無線光通訊應用於氣體感測37 4.1氨氣介紹37 4.2吸收光譜之特性38 4.2.1比爾定律與吸收度38 4.2.2吸收光譜39 4.3實驗設備40 4.3.1寬頻譜光源40 4.3.2氣體室42 4.3.3真空幫浦43 4.4實驗架構44 4.4.1光源強度分析45 4.5氨氣特性量測47 4.5.1靈敏度測試與線性度分析48 4.5.2長時間穩定性測試53 第五章結果與未來展望55 5.1結論55 5.2未來展望56 參考文獻57

    [1]Hranilovic, Wireless Optical Communication Systems, Springer, New York, 2004.
    [2]Deva K Borah, “A review of communication-oriented optical wireless systems,” EURASIP Journal on Wireless Communications and Networking, 2012.
    [3]F. R. Gfeller and U. Bapst. “Wireless in-house communication via diffuse infrared radiation.” Proc of IEEE, 67(11): 1474–1486, pp.1474-1486, 1979.
    [4]F. Deicke, W. J. Fisher and M. Faulwaber, “Optical wireless communication to eco system,” IEEE Future Network & Mobile Summit, pp.1-8, 2012.
    [5]H. H. Refai, J. J. Sluss and H. H. Refai, “The transmission of multiple RF signals in free space optics using wavelength division multiplexing,” Proc. of SPIE, vol. 5793, pp. 136-143, 2005.
    [6]呂宛蒨,“160 Gbit/s 雙向分波多工之無線光通訊設計與系統傳輸”,國立台灣科技大學碩士論文,2011。Also see H. Y. Hsu, W. C. Lu, L-. M. Hoa, Z. Ghassemlooy, Y. L. Yu and S.-K. Liaw, “2x80 Gbit/s DWDM bidirectional wavelength reuse optical wireless transmission”, IEEE Photonics Journal, vol. 5, No. 4, pp. 2553-2556, 2013.
    [7]林育民,“高容量無線光通訊用於接取網路與橋樑備用路由之設計研究”,國立臺灣科技大學碩士論文,2014。
    [8]葉嘉哲,“高速雙向無線光通訊參數設計與改良”,國立臺灣科技大學碩士論文,2013。
    [9]Y.-L.n Yu, S.-K. Liaw, H.-H. Chou, L.-M. Hoa, and Z. Ghassemlooy, “A Hybrid Optical Fiber and FSO System for Bidirectional Communications Used in Bridges”, IEEE Photonics Journal, Vol. 7, No. 6, Dec. 2015.
    [10]王懷慶,“無線光通訊系統之擴束設計量測與應用”,國立臺灣科技大學碩士論文,2015。
    [11]K. D. Langer, and J. Grubor, “Recent developments in optical wireless communications using infrared and visible light,” Proc. ICTON, vol. 3, pp.146-151, 2007.
    [12]Hossein Samimi, “Subcarrier Intensity Modulated Free-Space Optical Communications in K-Distributed Turbulence Channels,” IEEE/OSA Journal of Optical Communications and Networking, pp. 625-632, 2009.
    [13]O. Bouchet, H. Sizun, C. Boisrobert, F. De Fornel, and P. Favennec, “Free-space optics: propagation and communication,” ISTE Ltd, 2006.
    [14]楊國輝,“雷射原理與量測概論”,五南圖書,台中,269,1999。
    [15]曹培熙,“雷射安全措施”,國立臺灣大學物理系及醫學院光電生物醫學中心,2002。
    [16]D. J. T. Heatley, D. R. Wisely, I. Neild and P. Cochrane, “Optical wireless: the story so far,” IEEE Communications Magazine, vol.36, pp 72-74, 79-82, 1998.
    [17]S. O. Kasap, ”Optoelectronics and Photoncis: Principles and Practices,” Pearson Education International, pp. 1-13, 2001.
    [18]耿繼業、何建娃,”幾何光學”,全華圖書,臺北,第11章,2009。
    [19]Greivenkamp, John E. Field Guide to Geometrical Optics. Vol. FG01. Bellingham, WA: SPIE—The International Society for Optical Engineers, 2004.
    [20]Warren J. Smith’s, “Modern Optical Engineering”, 3rd ed. New York, NY: McGraw-Hill Education, 2000.
    [21]L. Rayleigh, “On the transmission of light through an atmosphere containing small particles in suspension, and on the origin of the blue of the sky,” Philosophical Magazine, vol. 47, no. 287, pp. 375-384, 1899.
    [22]C. F. Bohren and D. Huffman, “Absorption and scattering of light by small particles,” John Wiley, New York, 1983.
    [23]GEMINI OBSERVATORY, “IR Transmission Spectra,” October 31, 2012, http://www.gemini.edu/?q=node/10789
    [24]I. I. Kim, B. McArthur, E. J. Korevaar, “Comparison of laser beam propagation at 785 nm and 1550 nm in fog and haze for optical wireless communications,” Proc. SPIE, vol.4214, pp. 26-37, 2001.
    [25]H. C. van de Hulst, ”Light scattering by small particles,” Wiley, New York, 1957.
    [26]H. Hemmati, “Deep Space Optical Communications,” Wiley-Interscience, chapter 3, 2006.
    [27]E. Leitgeb, M. Geghart, and U. Birnbacher, “Optical networks, last mile access and applications,” Journal of Optical and Fibre Communications Reports, vol. 2, pp. 56-85, 2005.
    [28]M. Ijaz, Z. Ghassemlooy, J. Pesek, O. Fiser, H. L. Minh, and E. Bentley, “Modeling of fog and smoke attenuation in free space optical communications link under controlled laboratory conditions,” J. Lightwave. Technol., vol. 31, pp. 1720-1726, Jun, 2013.
    [29]M. al Naboulsi and H. Sizun, “Fog attenuation prediction for optical and infrared waves,” Optical Engineering, vol.23, pp. 319-329, 2004.
    [30]H. Willebrand, B. S. Ghuman, “Free space optics: enabling optical connectivity in today's network,” Sams Indianapolis, USA, 2002.
    [31]Z. Ghassemlooy, W. Popoola and S. Rajbhandari, “Optical wireless communications: system and channel modelling with matlab,” CRC Press, Taylor& Francis Group, New York, 2012.
    [32]R. M. Gagliardi, and S. Karp, “Optical communications”, 2nd ed, John Wiley, New York, 1995.
    [33]山下真司著、白中和譯,”光纖通信原理與最新應用技術”,建興文化事業有限公司,臺北,2004。
    [34]R. Ramaswami, K. N. Sivarajan, ”Optical Network,” Morgan Kaufmann, USA, pp. 258-263, 2002.
    [35]高偉誠、楊恒偉、劉鎮誠、謝連德、楊錫賢、李美玲, "南部地區市場氨氣逸散濃度之探討," 2004年台灣環境資源永續發展研討會,Oct, 2004.
    [36]陳慈陽、陳正根、管安露、吳天雲、李超,”法學新論”,月旦法學雜誌,2012。
    [37]「室內空氣品質資訊網」,行政院環境保護署。
    [38]「危害物質危害數據資料」,勞動部職業安全衛生署。
    [39]W. Demtroder, “Laser Spectroscopy Basic Concepts and Instrumentation”, 2nd ed., Springer-Verlag, 1996.
    [40]http://cfa-www.harvard.edu/HITRAN/
    [41]http://www.spectraplot.com/absorption
    [42]Bo Pedersen, Anders Bjarklev, ” The design of erbium-doped fiber amplifiers’’, J. Lightwave Technol., pp. 1105 - 1112, 1991.
    [43]P.C. Becker, N.A. Olsson and J.R. Simpson, “Erbium-doped fiber amplifiers, fundamentals and technology”, Academic Press, 1990.
    [44]AL Myers, JM Prausnitz, “Thermodynamics of mixed-gas adsorption”, AIChE Journal, pp. 121-127, 1965.

    無法下載圖示 全文公開日期 2021/08/15 (校內網路)
    全文公開日期 2026/08/15 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE