簡易檢索 / 詳目顯示

研究生: 吳政龍
Cheng-Lung Wu
論文名稱: 功能型聚胺基甲酸酯合成與性質之研究
The study on the synthesis and properties of functional polyurethanes
指導教授: 邱士軒
Shih-Hsuan Chiu
口試委員: 孫茂誠
Maw-Cherng Suen
李訓清
Hsun-Tsing Lee
邱顯堂
Hsien-Tang Chiu
邱智瑋
Chih-Wei Chiu
彭勝宏
Sheng-Hong Pong
學位類別: 博士
Doctor
系所名稱: 工程學院 - 材料科學與工程系
Department of Materials Science and Engineering
論文出版年: 2017
畢業學年度: 105
語文別: 中文
論文頁數: 195
中文關鍵詞: 聚胺基甲酸酯形狀記憶生物可分解極限氧指數
外文關鍵詞: Polyurethane, shape memory, biodegradable, limiting oxygen index
相關次數: 點閱:345下載:6
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本文使用高分子合成的概念將各具不同功能的有機物化合物合成到聚胺基甲酸酯 (PU)中,賦予聚胺基甲酸酯不同的功能。本研究分為三個部分:第一部份利用吡啶環合成形狀記憶聚胺基甲酸酯,形狀恢復達90%以上,未來有一定的潛力應用於醫療器材。第二部份為使用polycaprolactone diol (PCL)及2,2,3,3,4,4,5,5,-octafluoro-1,6-hexanediol合成聚胺基甲酸酯,並且使用另一組1,6-hexanediol合成之聚胺基甲酸酯進行各性質比較,研究結果發現,由於含氟聚胺基甲酸酯中的CF2與NH之間的氫鍵作用力影響,使PU的熱性質及機械性質提升並且有低的表面能,未來可應用於防水塗層之生物可分解之材料。第三部份採用分子結構設計概念,基於有機化學和高分子合成方法使用2-carboxyethyl(phenyl)phosphinic acid (CEPPA) 及 trimethylolpropane (TMP)合成新穎之阻燃劑,再將其阻燃劑合成於聚胺基甲酸酯,研究結果顯示極限氧指數 (LOI)達27.7以上,UL-94皆達V-0等級,適用於防火材料。


    Polymer synthesis was adopted by using organic compounds with varying functions, creating polyurethane (PU) of distinct functions. This study comprised three sections: First, pyridine rings were employed to synthesize shape-memory PU with a shape recovery rate of >90%, which can be potentially applied in medical instruments. Second, PU synthesized with polycaprolactone diol and 2,2,3,3,4,4,5,5,-octafluoro-1,6-hexanediol were compared with PU synthesized with 1,6-hexanediol in terms of properties. The results showed that hydrogen bonds between CF2 and NH in the fluorine-containing PU enhanced the thermal and mechanical properties of the polymer while exhibiting a low surface energy. This PU material is biodegradable and applicable to waterproofing coating. Third, a molecular structure design concept based on organic chemistry and polymer synthesis was employed to produce a novel fire retardant using 2-carboxyethyl(phenyl)phosphinic acid and trimethylolpropane, followed by combining the retardant with PU. The result showed that the synthesized PU reached a limiting oxygen index of >27.7 and met the V-0 requirements of UL 94, rendering it suitable for fire resistance.

    中文摘要 I ABSTRACT II 誌謝 III 目錄 IV 圖目錄 XI 表目錄 XIV 第1章 緒論 1 1.1 前言 1 1.2 研究動機與目的 3 第2章 文獻回顧 4 2.1 聚胺基甲酸酯簡介 4 2.1.1 聚胺基甲酸酯的化學結構 4 2.1.2 PU的微相分離現象 7 2.2 生物降解高分子材料簡述[19、20、21] 9 2.2.1 生物降解原理 10 2.2.2 聚合物材料生物分解之影響 11 2.2.3 生物可降解高分子之研究 12 2.3 形狀記憶聚胺基甲酸酯 14 2.3.1 形狀記憶聚胺基甲酸酯之原理 14 2.3.2 形狀恢復高分子[32] 16 2.3.3 形狀恢復高分子之研究 17 2.4 氟化高分子之研究 19 2.5 高分子之難燃機制 [60、61] 21 2.5.1 聚合物的燃燒原理 21 2.5.2 燃燒要素 21 2.6 聚合物之燃燒機制 23 2.6.1 難燃劑介紹及難燃化之原理[62、63、64、65] 24 2.6.1.1 氣相之防燃 24 2.6.1.2 凝聚相之防燃 25 2.6.1.3 中斷熱交換之防燃 26 2.6.2 防燃劑分類 27 2.6.2.1 含磷防燃劑 29 2.7 磷系高分子之研究 30 第3章 PDM/PU 32 3.1 簡介 32 3.2 實驗藥品 34 3.3 實驗設備 38 3.4 實驗步驟 39 3.4.1 PDM/PUs之合成 39 3.5 實驗配方 41 3.5.1 PDM/PUs之實驗配方 41 3.6 實驗流程 42 3.6.1 PDM/PUs之實驗流程 42 3.7 儀器及操作方法 43 3.8 結果與討論 48 3.8.1 凝膠滲透層析儀分析 48 3.8.2 傅立葉紅外線光譜分析 50 3.8.3 熱重損失分析 52 3.8.4 熱示差掃描分析 55 3.8.5 動態機械分析 57 3.8.6 機械性質分析 60 3.8.7 溶解性測試 62 3.8.8 濕度吸附 63 3.8.9 濕度敏感形狀記憶 66 3.8.10 形狀記憶恢復 68 第4章 PU/HD與PU/OFHD 71 4.1 簡介 71 4.2 實驗藥品 73 4.3 實驗設備 79 4.4 實驗步驟 80 4.4.1 PU/HD與PU/OFHD之合成 80 4.5 實驗配方 83 4.5.1 PU/HD與PU/OFHD之實驗配方 83 4.6 實驗流程 84 4.6.1 PU/OFHD之實驗流程 84 4.6.2 PU/HD之實驗流程 85 4.7 儀器及操作方法 86 4.8 結果與討論 92 4.8.1 凝膠滲透層析儀分析 92 4.8.1 傅立葉紅外線光譜分析 94 4.8.2 X射線光電子能譜 97 4.8.3 19F NMR 光譜分析 100 4.8.4 熱重損失分析 106 4.8.5 熱示差掃描分析 109 4.8.6 動態機械分析 111 4.8.7 機械性質分析 114 4.8.8 接觸角分析 116 4.8.9 化學阻抗分析 118 4.8.10 水解降解測試 120 4.8.11 SEM形態分析 122 第5章 HMCPP/PU之合成 124 5.1 簡介 124 5.2 實驗藥品 126 5.3 實驗設備 131 5.4 HMCPP/PU之合成 132 5.4.1 HMCPP耐燃劑之合成 132 5.4.2 HMCPP/PU之合成 134 5.5 實驗配方 136 5.5.1 HMCPP/PUs之實驗配方 136 5.6 實驗流程 137 5.6.1 HMCPP之實驗流程 137 5.6.2 HMCPP/PUs之實驗流程 138 5.7 儀器及操作方法 139 5.8 結果與討論 145 5.8.1 1H NMR 145 5.8.2 傅立葉紅外線光譜 147 5.8.3 凝膠滲透層析儀分析 149 5.8.4 熱重損失分析 151 5.8.5 熱示差掃描熱分析儀 153 5.8.6 動態機械分析 155 5.8.7 機械性質分析 158 5.8.8 能量散射分析 160 5.8.9 X射線光電子能譜 (XPS) 162 5.8.10 阻燃性試驗 164 第6章 結論 166 6.1 PDM/PU 166 6.2 PU/HD與PU/OFHD 167 6.3 HMCPP/PU 168 參考文獻 169 附錄 181

    1. Comstock M.J., "Urethane Chemistry and Applications," ACS Chapter 1, (1981).
    2. Cho J.W., So J.H., "Polyurethane-silver fibers prepared by infiltrationand reduction of silver nitrate," Materials Letters, Vol. 60, pp. 2653-2656 (2006).
    3. Schollenberger C.S., "Polyurethane and isocyanate based adhesives," Handbook of adhesives New York: Van Nostrand Reinhold Chapter 20, (1990).
    4. Chun B.C., Lee B.S., Chung Y.C., Sul K.I., Cho J.W., "Structure and block copolymers with shape memory effect," Macromolecules, Vol. 34, pp. 6431-6437 (2001).
    5. Huang S.J., "Encyclopedia of polymer science and engineering," John Wiley and Sons, Vol. 2, pp. 220-243 (1985).
    6. Chandra R., Rustgi R., "Biodegradable polymers," Progress in Polymer Science, Vol. 23, pp. 1273-335 (1998).
    7. Okada M., "Chemical syntheses of biodegradable polymers," Progress in Polymer Science, Vol. 27, pp. 87-133 (2002).
    8. Nair L.S., Laurencin C.T., "Biodegradable polymers as biomaterials," Progress in Polymer Science, Vol. 32, pp. 762-798 (2007).
    9. Pena J., Corrales T., Izquierdo-Barba I., Doadrio A.L., Vallet-Regi M., "Long term degradation of poly(ε-caprolactone) films in biologically related fluids," Polymer Degradation and Stability, Vol. 91, pp. 1424-1432 (2006).
    10. Coulembier O., Degee P., Hedrick J.L., Dubois P., "From controlled ring-opening polymerization to biodegradable aliphatic polyester: especially poly(betamalic acid) derivatives," Progress in Polymer Science, Vol. 31, pp. 723-747 (2006).
    11. John W.C., Bogart V., Gibson E., Copper S.L., "Structure-property relationships in polycaprolactone-polyurethanes," Journal of Polymer Science Part B: Polymer Physics, Vol. 21, pp. 65-95 (1983).
    12. Frontini P.M., Rink M., Pavan A., "Development of polyurethane engineering thermoplastics. II. Structure and properties," Journal of Applied Polymer Science, Vol. 48, pp. 2023-2032 (1993).
    13. Oertel G., "Polyurethane Handbook," Hanser Publisher, Munich, Germany, (1985).
    14. Hepburn C., "Polyurethane Elastomers," Applied science Publishers, New York, (1982).
    15. 鄭湘蓉,「具生物可分解性聚己內酯/聚胺基甲酸酯之合成與性質研究」,碩士學位論文,南亞技術學院,桃園市,2011。
    16. Cooper S.L., Estes G.M., "Multiphase Polymer," American Chemical Society, Washington D.C., Vol. 72, (1979).
    17. 王孟鈴,「硝酸銀對含吡啶聚胺基甲酸酯合成與性質影響之研究」,碩士學位論文,南亞技術學院,桃園市,2011。
    18. Schoolenerge C.S., Scott H., Moore G.R., "Thermoplastic Polyurethane Hydrolysis Stability," Rubber Word, Vol. 137, pp. 549-550 (1958).
    19. 古家豪,「無機添加物/聚胺基甲酸酯複合材料合成與性質之研究」,碩士學位論文,桃園創新技術學院,桃園市,2014。
    20. 焦劍,姚軍燕,功能性高分子材料,化學工業出版社,2006。
    21. 洪紫萍,王貴公,生態材料導論,五南圖書股份有限公司,2004。
    22. Mohanty A.K., Misra M., Hinrinchsen G., "Biofibres, biodegradable polymers and biocomposites: An overview" Macromolecular Materials and Engineering, Vol. 276-277, pp. 1-24 (2000).
    23. Mohanty A.K, Misra M., Drzal L.T., "Sustainable Bio-Composites from Renewable Resources: Opportunities and Challenges in the Green Materials World," Journal of Polymers and the Environment, Vol. 10, pp. 19-26 (2002).
    24. Gunatillake P., Mayadunne R., Adhikari R., El-Gewely M.R., "Recent developments in biodegradable synthetic polymers," Biotechnology Annual Review, Vol. 12, pp. 301-347 (2006).
    25. Arcana M., Giani-Beaune O., Schue R., Schue F., Amass W., Amass A., "Ringopening copolymerization of racemic β-butyrolactone with ε-caprolactone and d-valerolactone by distannoxane derivative catalysts: study of the enzymatic degradation in aerobic media of obtained copolymers," Polymer International, Vol. 51, pp. 859-866 (2002).
    26. Hong J.H., Jeon H.J., Yoo J.H., Yu W.R., Youk J.H., "Synthesis and characterization of biodegradable poly(ε-caprolactone-co-β- butyrolactone)-based polyurethane," Polymer Degradation and Stability, Vol. 92, pp. 1186-1192 (2007)
    27. Jiang X., Li J.H., Ding M.M., Tan H., Ling Q.Y., Zhong Y.P., "Synthesis and degradation of nontoxic biodegradable waterborne polyurethanes elastomer with poly(ε-caprolactone) and poly(ethylene glycol) as soft segment," European Polymer Journal, Vol. 43, pp. 1838-1846 (2007).
    28. Tsou C.H., Lee H.T., Tsai H.A., Cheng H.J., Suen M.C., "Synthesis and properties of biodegradable polycaprolactone/polyurethanes by using 2,6-pyridinedimethanol as a chain extender," Polymer Degradation and Stability, Vol. 98, pp. 643-650 (2013).
    29. Vladislav Jašo., Gregory Glenn., Artur Klamczynski., Zoran S. Petrović., "Biodegradability Study of Polylactic Acid/Thermoplastic Polyurethane Blends, Polymer Testing, DOI: 10.1016/j.polymertesting.2015.07.011 (2015).
    30. Liu C.B., Gu Y.C., Qian Z.Y., Fan L.Y., Li J., Chao G.T., Tu M.J., "Hydrolytic degradation behavior of biodegradable polyetheresteramide-based polyurethane copolymers," Journal of Biomedical Materials Research Part A, Vol. 75, pp. 465-471 (2005).
    31. Sarkar D., Yang J.C., Gupta A.S., Lopina S.T., "Synthesis and characterization of L-tyrosine based polyurethanes for biomaterial applications," Journal of Biomedical Materials Research Part A Vol. 90, pp. 263-271 (2009).
    32. 王學樑,「奈米銀-形狀記憶聚胺基甲酸酯功能性奈米複合材料之製備及應用於多機能性紡織品之研究」,碩士論文,中國文化大學,台北市,2007。
    33. 林志榮,「聚氨酯形狀記憶材料及其機械黏彈模型」,博士論文,台灣大學,台北市,1998。
    34. 楊朝全,「聚氨酯形狀記憶高分子之製備與性質研究」,碩士論文,台灣大學,台北市,1994。
    35. 陳劉旺,化工技術,2,P.96 (1993)
    36. Nakayma K., "Properties and Applications of Shape-Memory Polymers," International Polymer Science and Technology, Vol. 18, pp. 43-48 (1991).
    37. Shirai Y., Hayash S., "Mitsubishi Heavy Industries," Mitsubishi Technical Bulletin, Vol. 184, pp.1 (1988).
    38. Ishii M., "Plastic Science," Vol. 35, pp.158 (1989).
    39. Ratna D., Karger-Kocsis J., "Recent advances in shape memory polymers and composites: a review," Journal of Materials Science, Vol. 43, pp. 254-269 (2008).
    40. Behl M., Lendlein A., "Actively moving polymers," Soft Matter, Vol. 3, pp. 58-67 (2007).
    41. Huang W.M., Yang B., Zhao Y., Ding Z., "Thermo-moisture responsive polyurethane shape-memory polymer and composites: a review," Journal of Materials Chemistry, Vol. 20, pp. 3367-3381 (2010).
    42. Hu J.L., Chen S.J., "A review of actively moving polymers in textile applications," Journal of Materials Chemistry, Vol. 20, pp. 3346-335 (2010).
    43. Chen S., Hu J., Zhuo H., Yuen C., Chan L., "Study on the thermal-induced shape memory effect of pyridine containing supra- molecular polyurethane," Polymer, Vol. 51, pp. 240-248 (2010).
    44. Cho J.W., Kim J.W., Jung Y.C., Goo N.S., "Electroactive Shape-Memory Polyurethane Composites Incorporating Carbon Nanotubes," Macromolecular Rapid Communications, Vol. 26, pp. 412-416 (2005).
    45. Lendlein A., Jiang H.Y., Junger O., Langer R., "Light-induced shape-memory polymers," Nature, Vol. 434, pp. 879-882 (2005).
    46. Yuan Z., Ji B., Wu L.B., "Synthesis and thermal induced shape memory properties of biodegradable segmented poly(ester-urethane)s," Acta Polymerica Sinica, Vol. 41, pp. 153-158 (2009).
    47. Hollander S.D., Assche G.V., Mele B.V., Prez F.D., "Studies of the moisture-sensitive shape memory effect of pyridine-containing polyurethanes," Polymer, Vol. 50, pp. 4447-4454 (2009).
    48. Chen S., Hu J., Yuen C.W., Chan L., "Supramolecular polyurethane networks containing pyridine moieties for shape memory materials," Materials Letters, Vol. 63, pp. 1462-1464 (2009).
    49. Zhu Y., Hu J.L., Liu Y.J., "Shape memory effect of thermoplastic segmented polyurethanes with self-complementary quadruple hydrogen bonding in soft segments," The European Physical Journal E, Vol. 28, pp. 3-10 (2009).
    50. Ahmad M., Xu B., Purnawali H., Fu Y., Huang W., Miraftab M., Luo J., "High Performance Shape Memory Polyurethane Synthesized with High Molecular Weight Polyol as the Soft Segment," Applied Sciences, Vol. 2, pp. 535-548 (2012).
    51. Corcuera M.A., Saralegi A., Ferna´ndez-d’Arlas B., Mondragon I., Eceiza A., "Shape Memory Polyurethanes Based on Polyols Derived From Renewable Resources," Macromolecular Symposia, Vol. 321-322, pp. 197-201 (2012).
    52. Kang S.M., Lee S.J., Kim B.K., "Shape memory polyurethane foams," eXPRESS Polymer Letters, Vol. 6, pp. 63-69 (2012).
    53. Haghayegh M., Mir Mohamad Sadeghi G., "Synthesis of Shape Memory Polyurethane/Clay Nanocomposites and Analysis of Shape Memory, Thermal, and Mechanical Properties," Polymer Composites, Vol. 33, pp. 843-849 (2012).
    54. Meng Q., Hu J., Zhu Y., "Shape-Memory Polyurethane/Multiwalled Carbon Nanotube Fibers," Journal of Applied Polymer Science, Vol. 106, pp. 837-848 (2007).
    55. Kalita H., Karak N., "Biobased Hyperbranched Shape-Memory Polyurethanes: Effect of Different Vegetable Oils," Journal of Applied Polymer Science, DOI: 10.1002/APP.39579 (2014).
    56. Tao L., Lin Y., "Synthesis and properties of fluorinated thermoplastic polyurethane elastomer," Journal of Fluorine Chemistry, Vol. 131, pp. 36-41 (2010).
    57. Ge Z., Yuan Z.X., Dai J.B., Li W.H., Luo Y.J., "Synthesis and characterization of fluorinated polyurethane with fluorine-containing pendent groups," Chinese Chemical Letters, Vol. 19, pp. 1293-1296 (2008).
    58. Kiran S., Joseph R., "Synthesis and characterization of X-ray opaque polycarbonate urethane: Effect of a dihalogenated chain extender on radiopacity and hemocompatibility," Journal of Biomedical Materials Research Part A, Vol. 103, pp. 2214-2224 (2015).
    59. Su S.K., Gu J.H., Lee H.T., Yu S.H., Wu C.L., Suen M.C., "Effects of an Aromatic Fluoro-Diol and Polycaprolactone on the Properties of the Resultant Polyurethanes," Advances in Polymer Technology, DOI 10.1002/adv.21773 (2016).
    60. 柳元涵,「新穎氮磷共乘難燃添加劑之合成、鑑定與性質探討」,碩士論文,國立成功大學,台南市,2002。
    61. 周俊穎,「防燃形狀記憶型聚胺基甲酸酯之合成與特性及應用於多機能性棉織物加工研究」,碩士論文,中國文化大學,台北市,2016。
    62. 徐曉楠、周正懋,防火塗料,化學工業出版社(2004)。
    63. 陳昭瑋,「改善聚氨酯薄膜材料阻燃性質之研究」,碩士論文,國立中山大學,高雄市,2014。
    64. 林孟毅,「含磷水性聚胺酯複合材料作為阻燃塗料之研究」,碩士論文,國防大學,桃園市,2012。
    65. 余鳳兒,「改質聚氨酯/聚矽氧烷耐燒蝕材料研究」,碩士論文,國立中山大學,高雄市,2004。
    66. Liu Y.L., Hsiue G.H., Lee R.H., Chiu Y.S., "Phosphorus-containing epoxy for flame retardant. III: Using phosphorylated diamines as curing agents," Journal of Applied Polymer Science, Vol. 63, pp. 895-901 (1997).
    67. Velencoso M.M., Ramos M.J., Klein R., Lucas A.D., Rodriguez J.F., "Thermal degradation and fire behaviour of novel polyurethanes based on phosphate polyols," Polymer Degradation and Stability, Vol. 101, pp. 40-51(2014).
    68. Matko´ S.z., Toldy A., Keszei S., Anna P., Bertalan G., Marosi G., "Flame retardancy of biodegradable polymers and biocomposites," Polymer Degradation and Stability, Vol. 88, pp. 138-145 (2005).
    69. Aslzadeh M.M., Abdouss M., Sadeghi G.M.M., "Preparation and Characterization of New Flame Retardant Polyurethane Composite and Nanocomposite," Journal of Applied Polymer Science, Vol. 127, pp. 1683-1690 (2013).
    70. Chen-Yang YW, Yuan CY, Li CH, Yang HC, "Preparation and Characterization of Novel Flame Retardant (Aliphatic phosphate) Cyclotriphosphazene-Containing Polyurethanes," Journal of Applied Polymer Science, Vol. 90, pp. 1357-1364 (2003).
    71. Liu Y.L., Hsiue G.H., Lan C.W., Chiu Y.S., "Flame-Retardant Polyurethanes from Phosphorus-Containing Isocyanates," Journal of Polymer Science Part A: Polymer Chemistry, Vol. 35, pp. 1769-1780 (1997).
    72. Troev K., Tsevi R., Bourova, Kobayashi S., Uayama H., Roundhill D.M., "Synthesis of Phosphorus-Containing Polyurethanes without Use of lsocyanates," Journal of Polymer Science Part A: Polymer Chemistry, Vol. 34, pp. 621-631 (1996).
    73. 邱忠龍,「含奈米銀活性碳聚胺基甲酸酯的合成與性質之研究」,碩士論文,桃園創新技術學院,桃園市,2015。
    74. 劉家宏,「含牡蠣殼粉或改質坡縷石的聚胺基甲酸酯合成與性質之研究」,碩士論文,桃園創新技術學院,桃園市,2015。
    75. Vogt B.D., Soles C.L., Lee H.J., Lin E.K., Wu W. "Moisture absorption into ultrathin hydrophilic polymer films on different substrate surfaces," Polymer, Vol. 46, pp. 1635-1642 (2005).
    76. Brunette C.M., Hsu S.L., Macknight W.J., "Hydrogen-Bonding Properties of Hard-Segment Model Compounds in Polyurethane Block Copolymers," Macromolecules, Vol. 15, pp. 71-77 (1982).
    77. Arun Prasath R., Nanjundan S., Pakula T., Klapper M., "Thermal and dynamic mechanical behaviour of calcium containing co-polyurethanes," Polymer Degradation and Stability, Vol. 85, pp. 911-923 (2004).
    78. Rueda-Larraz L., Fernandez d’Arlas B., Tercjak A., Ribes A., Mondragon I., Eceiza A., "Synthesis and microstructureemechanical property relationships of segmented polyurethanes based on a PCL-PTHF-PCL block copolymer as soft segment," European Polymer Journal, Vol. 45, pp. 2096-2109 (2009).
    79. Papai I., Jancso G., "Hydrogen bonding in methyl-substituted pyridine-water complexes," Journal of Physical Chemistry A, Vol. 104, pp. 2132-2137 (2000).
    80. Chen S.J., Hu J.L., Yuen C.W., Chan L.K. "Novel moisture-sensitive shape memory polyurethanes containing pyridine moieties," Polymer, Vol. 50, pp. 4424-4428 (2009).
    81. Chen S., Hu J., Chen S., "Studies of the moisture-sensitive shape memory effect of pyridine-containing polyurethanes," Polymer International, Vol. 61, pp. 314-320 (2012).
    82. Sawada H., "Fluorinated Peroxides," Chemical Reviews, Vol. 96, pp. 1779-1808 (1996).
    83. Sawada H., Ariyoshi Y., Lee L., Kyokane J., Kawase T., "A new approach to highly conductive polymer electrolytes: synthesis of gelling fuoroalkylated end-capped 2-acrylamido-2-methylpropanesulfonic acid copolymers containing poly(oxyethylene) units," European Polymer Journal, Vol. 36, pp. 2523-2526 (2000).
    84. Tan H., Xie X., Li J., Zhong Y., Fu Q., "Synthesis and surface mobility of segmented polyurethanes with fluorinated side chains attached to hard blocks," Polymer, Vol. 45, pp. 1495-502 (2004).
    85. Wang L.F., "Experimental and theoretical characterization of the morphologies in fluorinated polyurethanes," Polymer, Vol. 48, pp. 894-900 (2007).
    86. Wanga L.F., Wei Y.H., "Effect of soft segment length on properties of fluorinated polyurethanes," Colloids and Surfaces B: Biointerfaces, Vol. 41, pp. 249-255 (2005)
    87. Chen K.Y., Kuo J.F., "Synthesis and properties of novel fluorinated aliphatic polyurethanes with fluoro chain extenders," Macromolecular Chemistry and Physics, Vol. 201, pp. 2676-2686 (2002).
    88. Ge Z., Zhang X., Dai J., Li W., Luo Y.. "Synthesis, characterization and properties of a novel fluorinated polyurethane," European Polymer Journal, Vol. 45, pp. 530-36 (2009).
    89. Tonellia C., Ajroldi G., Turturro A., Marigo A., "Synthesis methods of fluorinated polyurethanes. 1. Effects on thermal and dynamic-mechanical behaviours," Polymer, Vol. 42, pp. 5589-5598 (2001).
    90. Su T., Wang G.Y., Wang S.L., Hu C.P., "Fluorinated siloxane-containing waterborne polyurethaneureas with excellent hemocompatibility, waterproof and mechanical properties," European Polymer Journal, Vol. 46, pp. 472-483 (2010).
    91. Takakura T., Kato M., Yamabe M., "Fluorinated polyurethanes, 1. Synthesis and characterization of fluorine-containing segmented poly(urethane-urea)s," Macromolecular Chemistry and Physics, Vol. 191, pp. 625-632 (1900)
    92. Ferraria A.M., Silva J.D.L., Rego A.M.B., "XPS studies of directly fluorinated HDPE: problems and solution," Polymer, Vol. 44, 7241-7249 (2003).
    93. Ribeiro A.A., Umayahara K., "19F, 13C NMR analysis of an oxygen carrier, perfluorotributylamine, and perfluoropentanoic acid," Magnetic Resonance in Chemistry, Vol. 41, pp. 107-114 (2003).
    94. Schwarz R., Seelig J., Kunnecke B., "Structural properties of perfluorinated linear alkanes: a 19F and 13C NMR study of perfluorononane," Magnetic Resonance in Chemistry, Vol. 42, pp. 512-517 (2004).
    95. Buchanan G.W., Munteanu E., Dawson B.A., Hodgson D., "Concerning the origin of 19F-19F NMR COSY and NOESY connections in the spectra of perfluorooctanoic acid, RF-palmitic acid-F13 and diethyl perfluorosuberate," Magnetic Resonance in Chemistry, Vol. 43, pp. 528-534 (2005).
    96. Sain M., Park S.H., Suhara F., Law S., " Flame retardant and mechanical properties of natural fibre–PP composites containing magnesium hydroxide," Polymer Degradation and Stability, Vol. 83, pp. 363-367 (2004).
    97. Zhu S., Shi W., " Thermal degradation of a new flame retardant phosphate methacrylate polymer," Polymer Degradation and Stability, Vol. 80, pp. 217-222 (2003).
    98. Liu Y.L., Hsiue C.H., Lan C.W., Kuo J.K., Jeng R.J., Chiu Y.S., " Synthesis, thermal properties, and flame retardancy of phosphorus containing polyimides," Journal of Applied Polymer Science, Vol. 63, pp. 875-882 (1997).
    99. Yeh J.T., Hsieh S.H., Cheng Y.C., Yang M.J., Chen K.N., " Combustion and smoke emission properties of poly(ethylene terephthalate) filled with phosphorous and metallic oxides," Polymer Degradation and Stability, Vol. 61, pp. 399-407 (1998).
    100. Banks M., Ebdon J.R.; Johnson M., "The flame-retardant effect of diethyl vinyl phosphonate in copolymers with styrene, methyl methacrylate, acrylonitrile and acrylamide," Polymer, Vol. 35, pp. 3470-3473 (1994).
    101. Cheng T.C., Chiu Y.S., Chen H.B., Ho S.Y., "Degradation of phosphorus-containing polyurethanes," Polymer Degradation and Stability, Vol. 47, pp. 375-381 (1995).
    102. Zhao H., Wang Y.Z., Wang D.Y., Wu B., Chen D.Q., Wang X.L., Yang K.K., "Kinetics of thermal degradation of flame retardant copolyesters containing phosphorus linked pendent groups," Polymer Degradation and Stability, Vol. 80, pp. 135-140 (2003).
    103. Asrar J., Berger P.A., Hurlbut J., "Synthesis and characterization of a fire-retardant polyester: Copolymers of ethylene terephthalate and 2-carboxyethyl(phenylphosphinic) acid," Journal of Polymer Science Part A: Polymer Chemistry, Vol. 37, pp. 3119-3128 (1999).
    104. Grassie N., Mackerron D.H., " Synthesis and degradation of polyurethanes containing phosphorus—Part III: Thermal degradation of a series of polyurethanes incorporating butylene phenylphosphonate structures," Polymer Degradation and Stability, Vol. 5, pp. 89-103 (1983).
    105. Chang T.C., Shen W.Y., Chiu Y.S., Chen H.B., Ho S.Y., " Synthesis and characterization of phosphorus-containing polyurethanes," Journal of Polymer Research, Vol. 1, pp. 353-359 (1994).
    106. Chang T.C., Shen W.Y., Chiu Y.S., Ho S.Y., " Thermo-oxidative degradation of phosphorus-containing polyurethane," Polymer Degradation and Stability, Vol. 49, pp. 353-360 (1995).
    107. Çelebi F., Polat O., Aras L., Gündüz Güngör., Akhmedov Idris M., "Synthesis and characterization of water-dispersed flame-retardant polyurethane resin using phosphorus-containing chain extender," Journal of Applied Polymer Science, Vol. 91, pp. 1314-1321. (2004)
    108. Huang W.K., Yeh J.T., Chen K.J., Chen K.K., "Flame retardation improvement of aqueous-based polyurethane with aziridinyl phosphazene curing system," Journal of Applied Polymer Science, Vol. 79, pp. 662-673 (2001).
    109. Cullis C.F., Hirschler M.M., "Char Formation from Polyolefins," European Polymer Journal, Vol. 20, pp. 53-60 (1984).
    110. Wang D.Y., Liu Y., Wang Y.Z., Artiles C.P., Hull T.R., Price D., "Fire retardancy of a reactively extruded intumescent flame retardant polyethylene system enhanced by metal chelates," Polymer Degradation and Stability, Vol. 92, pp. 1592-1598 (2007).

    無法下載圖示 全文公開日期 2022/07/04 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE