簡易檢索 / 詳目顯示

研究生: 許文政
Wun-Jheng Hsu
論文名稱: 數位控制應用於半橋式轉換器
Digital Control Application in Half-Bridge Converter
指導教授: 呂錦山
Ching-Shan Leu
口試委員: 邱煌仁
Huang-Jen Chiu
榮世良
Brady Jung
林瑞禮
Ray-Lee Lin
黃仲欽
Jong-Chin Hwang
學位類別: 碩士
Master
系所名稱: 電資學院 - 電機工程系
Department of Electrical Engineering
論文出版年: 2012
畢業學年度: 100
語文別: 英文
論文頁數: 71
中文關鍵詞: 類比控制數位控制Taiwan Tech 半橋式轉換器
外文關鍵詞: Analog control, digital control, Taiwan Tech Half-Bridge Converter
相關次數: 點閱:469下載:12
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 以40V到75V輸入電壓,48V輸出電壓的電池備用電源的通信系統電能轉換應用,除了需要可昇壓可降壓的電壓增益,為延長電池壽命需要連續的輸入電流。在可利用的轉換器技術之中,Buck-Boost衍生的轉換器雖然可以提供所需的電壓增益。然而輸入電流是非連續的,產生di/dt的雜訊。因此需要一個較大的EMI輸入濾波器。同時因轉換的小信號轉移函數有移動的極點,使得電壓模式的脈寬調變控制難以達成穩定的工作狀況。
    本論文使用低輸入電流漣波半橋式轉換器,搭配一昇壓變壓器,除了可獲得可升可降的電壓增益,低輸入電流連波,並容易達成電壓模式的脈寬調變控制。然而,此一電路的控制方面尚未被探討。因此控制技術成為了本篇論文的研究主題。
    在完成此一電路的類比控制設計和實現,藉由將類比控制的電路參數,利用雙線Z-轉換,獲得數位控制的差分方程式,再透過韌體的程式寫入德州儀器公司的 TMS320F28027 數位信號處理器,藉此實現數位控制。最後包括類比控制和數位控制的實驗結果將被呈現和比較。


    In this thesis, a backup power converter with wide-range input voltage from 40 to 75 Vdc and output voltage 48 Vdc is required in telecommunication system application. Therefore, a step-up/step-down voltage gain and non-pulsating input current is requested. Among the available topologies, the buck-boost derived converters are suitable for this applications. However, there is a pulsating input current waveform of the Buck-Boost derived converters. The pulsating input current ripple generates di/dt noise and is not suitable for the battery based backup power system. Therefore, a larger filter is needed to meet the EMI regulation and extend the battery life. On the other hand, both derived converters have moving pole characteristic inherited from the Boost converter resulting in hard realizing the controller with PWM voltage-mode control.
    Therefore, the Half-Bridge Converter with Input Current Ripple Reduction (HBC-CRR) is employed to obtain the required voltage gain, reduced input current ripple, and a controller with the simple voltage mode. Although the required voltage gain and a continuous input current can be achieved, the control of this topology has not been explored yet. It becomes the research topic of this thesis.
    The analog control of HBC-CRR will be designed and implemented. Moreover, the obtained transfer function will be converted into the difference equation for the design of the digital control. Thus, digital control will be implemented by using TI TMS320F28027 Digital Signal Processors (DSPs). In addition to the theory, several main features and development tools for DSPs are introduced. Moreover, the experimental results of both analog and digital controllers for a Half-Bridge Converter with Current Ripple Reduction (HBC-CRR) power converter are presented and compared.

    Abstract............................................................II Acknowledgement.....................................................IV Table of Contents....................................................V List of Figures....................................................VII List of Table.......................................................IX Chapter 1 Introduction...............................................1 1.1 Background and Motivation........................................1 1.2 Objectives of the Thesis.........................................4 1.3 Organization of the Thesis.......................................4 Chapter 2 Half-Bridge Converter with Current Ripple Reduction........5 2.1 Introduction.....................................................5 2.2 Operation Principle..............................................7 2.3 Circuit Parameters Design.......................................10 2.4 Experimental Result of HBC-CRR..................................11 2.5 Summary.........................................................14 Chapter 3 Analog Control............................................16 3.1 Introduction....................................................16 3.2 Analog Control Design...........................................17 3.3 Experimental Results............................................26 3.3.1 Experimental Specifications and the Results...................27 3.4 Summary.........................................................29 Chapter 4 Digital control...........................................30 4.1 Introduction....................................................30 4.2 Design of the Digital Control...................................31 4.2.1 Analog-to-Digital Conversion (ADC)............................31 4.2.2 Digital PWM Module (DPWM).....................................32 4.2.3 IQ math Library...............................................33 4.2.4 Q15 Format....................................................33 4.2.5 Digital Compensator...........................................33 4.3 Hardware of the Digital Control.................................37 4.4 The Software of Digital Control.................................39 4.4.1 The Flowchart of Digital Control..............................39 4.4.2 Digital Control Sampling Scheme...............................42 4.5 Experimental Results............................................43 4.5.1 Experimental Result of the Digital Control for the HBC-CRR....43 4.6 Summary.........................................................45 Chapter 5 Conclusions and Future Research...........................47 5.1 Conclusions.....................................................47 5.2 Future Research.................................................48 Reference...........................................................49 Appendix............................................................52 Vita................................................................62

    [1] H. Keiichi, M. Toshiro and Y. Mikio, “Cost-benefit analysis of emergency backup power systems for mission critical applications,” Telecommunications Energy Conference, 32nd International, pp. 1-7, Jun. 2010.
    [2] M. Fraisse and L. Buchsbaum, “Environment friendly high quality, high availability telecom power plant architecture,” Telecommunications Energy Conference. 24th Annual International, pp. 463-469, Sep. 2002.
    [3] K. Saito, T. Shodai, A. Yamashita and H. Wakaki, “High performance backup power supply system,” Telecommunications Energy Conference. The 25th International , pp. 261-267, Oct. 2003.
    [4] E. Santi, D. Franzoni, A. Monti, D. Patterson, F. Ponci and N. Barry, “ A fuel cell based domestic uninterruptible power supply,” Applied Power Electronics Conference and Exposition. Seventeenth Annual IEEE, pp. 605-613, 2002.
    [5] W. Choi, P. N. Enjeti and J. W. Howze, “Development of an equivalent circuit model of a fuel cell to evaluate the effects of inverter ripple current,” Applied Power Electronics Conference and Exposition. Nineteenth Annual IEEE, pp. 355-361, Feb. 2004.
    [6] G. Fontes, C. Turpin, R. Saisset, T. Meynard and S. Astier, “Interactions between fuel cells and power converters influence of current harmonics on a fuel cell stack,” Power Electronics Specialists Conference. IEEE 35th Annual, pp. 4729-4735, Jun. 2004.
    [7] S. Jemei, D. Hissel, M. C. Pera and J. M. Kauffmann, “A new modeling approach of embedded fuel-cell power generators based on artificial neural network,” Industrial Electronics, IEEE Transactions on , vol.55, no.1, pp. 437-447, Jan. 2008.
    [8] J. M. Correa, F. A. Farret, L. N. Canha and M. G. Simoes, “An electrochemical-based fuel-cell model suitable for electrical engineering automation approach,” Industrial Electronics, IEEE Transactions on , vol.51, no.5, pp. 1103–1112, 2004.
    [9] C. S. Leu; N. Q. Trong; “A novel Half-Bridge converter with Current Ripple Reduction,” Energy Conversion Congress and Exposition (ECCE). pp.3954-3959, 17-22 Sept. 2011
    [10] N. Q. Trong, “Half-Bridge converter with Current Ripple Reduction,” M.S. thesis, National Taiwan University of Science and Technology, Electrical and Computer Engineering Dept., Taipei, Taiwan, 2011.
    [11] L. Guo, J. Y. Hung, and R. M. Nelms, “PID controller modifications to improve steady-state performance of digital controllers for buck and boost converters”, Conference Proceedings of IEEE Applied Power Electronics Conference and Exposition, pp. 381 – 388, Feb 2002.
    [12] L. Guo, J. Y. Hung, and R. M. Nelms, “Digital controller design for Buck and Boost converters Using Root Locus Techniques”, The 29th Annual Conference of the IEEE Industrial Electronics Society (IECON’03), pp. 1864 - 1869, Nov 2003.
    [13] Hands-On Digital Power Design Workshop Abridged Lecture Notes, Texas Instruments.
    [14] Tobias Lernvall, Rosalie Olsson, 2006, Design of a Digital Control System for a
    Half-Bridge Converter [Online] Available http://webfiles.portal.chalmers.se/et/MSc/Lernvall&OlssonMSc.pdf
    [15] Y. Duan, H. Jin, “Digital Controller Design for Switch mode Power Converters”, Conference Proceedings of IEEE Applied Power Electronics Conference and Exposition, pp. 967-973, 1999.
    [16] C. P. Basso, Switch-Mode Power Supplies, The McGraw-Hill Companies, 2008.
    [17] H. Dean, Venable, “the K factor: a new mathematical tool for stability analysis and synthesis’’ [Online] Available
    http://www.icwic.com/icwic/data/pdf/cd/cd057/Switching,%20DC-DC%20Regulator,%20Controller/1184.pdf
    [18] N. Mohan, T. M. Undeland, and W. P. Robbins, Power Electronics: Converter, Applications, and Design, 3rd Ed, John Wiley& Sons, Inc, 2003.
    [19] “SIMPLIS reference manual” Catena software Ltd. http://www.catena.uk.com/site/downloads/manuals.htm
    [20] Designing a TMS320F280x Based Digitally Controlled DC-DC Switching Power Supply, Texas Instruments, 2005.
    [21] IQmath Library, Texas Instruments, 2002.
    [22] TMS320x2802x, 2803x Piccolo Analog-to-Digital Converter (ADC) and Comparator, Texas Instruments, 2008.
    [23] TMS320x2802x, 2803x Piccolo Enhanced Pulse Width Modulator (ePWM) Module, Texas Instruments, 2008.
    [24] Piccolo Microcontrollers, Texas Instruments, 2009.
    [25] TMS320C28x Optimizing C/C++ Compiler User's Guide, Texas Instruments, 2001.
    [26] TMS320F2802x/TMS320F2802xx Piccolo System Control and Interrupts, Texas Instruments, 2008.
    [27] Texas Instrument.
    http://www.ti.com.

    QR CODE