簡易檢索 / 詳目顯示

研究生: 蔡一賢
Yi-Hsien Tsai
論文名稱: 利用多段殘段及z-轉換技術設計與製作主、被動微波元件
Design and Implementation of Passive and Active Microwave Components Using Multiple-Section Stubs and z-Transform Technique
指導教授: 徐敬文
Ching-Wen Hsue
口試委員: 馮武雄
Wu-Shiung Feng
張勝良
Sheng-Lyang Jang
學位類別: 博士
Doctor
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2015
畢業學年度: 103
語文別: 英文
論文頁數: 117
中文關鍵詞: z-轉換多段殘段
外文關鍵詞: z-Transform, Multiple-Section Stubs
相關次數: 點閱:236下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

在本論文中,我們提出一種利用離散時域技術來製作微波電路濾波器的新設計方法。首先,從z域中推導各種傳輸線的鏈散矩陣,接著以串接傳輸線以及並接殘段元件方式組成濾波器網路,再藉由相乘每一組傳輸線元件的鏈散矩陣,來找出此網路完整的鏈散矩陣。
此外,我們提出一種由二段開路殘段所組成的帶拒波器,它可以模擬在z域中的二階帶拒濾波器,它的頻寬、中心頻率、及高階諧波特性可以由二段殘段的特性阻抗來決定。另外,嵌入式殘段可以呈現出較高的特性阻抗,因此可以改善在止帶頻段上的衰減率,若以傳統結構這是很難實作出來的;最後,我們提出以離散時堿的合成方法設計微波主動積分器,它是由連結串接微帶線和砷化鎵場效電晶體所組成。
在論文的最後,我們利用本論文中所提出的設計方法實作多組微波電路,我們將量測所有濾波器的散射參數並與理論值進行比對,以證明本方法的可行性。


In this thesis, we propose a new design method to implement a microwave circuit by using the discrete-time domain technique. First of all, the chain-scattering matrices of variety transmission-lines derived from z-domain. Then by cascading serial transmission lines and shunt stubs component to form filter network, the overall chain scattering matrix of the network can be found by the multiplications of the chain scattering matrix of each transmission line component.
In addition, we propose the notch filter consisted of a two-section open stub that emulated a second-order notch filter in the z domain. The performances of bandwidth, center frequency and high-order harmonic frequency to the fundamental frequency are determined by the characteristic impedances of two finite sections. On the other hand, the embedded stub exhibits higher equivalent characteristic impedance and improves the roll-off rate in the stop-band which is difficult fabricate in the conventional structure. Finally, we propose the discrete-time domain synthesizing method to design microwave active integrator. The integrator formed by cascade connections of serial line and GaAs FET.
Eventually, we make use of the design method that we proposed to implement several types of microwave circuits. We will measure the S-parameter of all the filters and compare with the theoretical values to demonstrate the validity of the design method.

摘要 III ABSTRACT IV 誌謝 V CONTENTS VI LIST OF FIGURES IX LIST OF TABLES XIII CHAPTER 1 Introduction 1 1.1 Motivation 1 1.2 Proposal 2 1.3 Outline of Chapters 4 CHAPTER 2 Fundamental Theory 5 2.1 Discrete-Time Filter 5 2.2 Microstrip Line 7 2.3 Notch filter 9 2.4 Transfer Functions of Transmission Line and Cascaded Networks 13 2.4.1 Chain-Scattering Parameters 13 2.4.2 Chain-Scattering Parameters of a Serial Transmission-Line Section 15 2.4.3 Formulations of Chain-Scattering Parameters of Basic Signal Lines 19 2.4.4 Transfer Functions of Cascaded Networks 19 2.5 Synthesis Algorithm of Filter Design 23 CHAPTER 3 Analysis Scheme of Multiple-Section Stubs and FET with Transform Technique 27 3.1 Performances of Three Planar Shunt Open Stubs Structure 28 3.2 Construction of Notch Filter using Two-Section Stub 30 3.3 Three Structure of Notch Filter 33 3.4 An Open-Circuited Three-Section Stub 35 3.6 Summary 40 CHAPTER 4 Design and Fabrication of Microwave Circuits 41 4.1 Bandstop Filter using Discrete-Time Filter and Frequency Scaling Techniques 42 4.2 Bandstop Filter with Extended Upper Passbands 46 4.3 Microwave Notch Filter Using Embedded Stubs 50 4.4 Low-Pass Filter using Multiple-Section Stub 53 4.5 Sharp Rejection Filter using Embedded Two-Section Stubs 62 4.5.1 Low-Pass Filter 62 4.5.2 UWB Band-Pass Filter 64 CHAPTER 5 Microwave Active Integrator 70 5.1 Stability Consideration of Microwave Transistor Amplifier Design 70 5.1.1 Stability Factor 70 5.1.2 Stability Circle 72 5.1.3 Unconditional Stable 73 5.1.4 The Feedback Structure of Transistor 76 5.2 Transfer Functions of GaAs FET in the z-domain 79 5.2.1 z-domain Representation of GaAs FET 79 5.2.2 Chain-scattering Parameter Matrices of GaAs FET with Feedback Circuit 80 5.3 Design of Microwave Active Integrator 84 5.3.1 Time Constant of An Integrator 84 5.3.2 Microwave Active Integrator 87 CHAPTER 6 Conclusion 93 6.1 Conclusion 93 6.2 Future Work 94 BIBLIOGRAPHY 95 APPENDIX 102 PUBLICATION LIST 103

[1] D. M. Pozar, Microwave Engineering, 2nd Ed., John Wiley& Sons, Inc., 1998.
[2] R. J. Weber, Introduction to Microwave Circuits, IEEE Press, Inc., 2000.
[3] J. S. G. Hong and M.J. Lancaster, Microstrip Filters for RF/Microwave Applications, John Wiley& Sons, Inc., 2001.
[4] J. A. G. Malherbe, Microwave Transmission Line Filter, Artech House, Dedham, Mass., 1979.
[5] G. L. Matthaei, L.young, and E. M. T. Jones, Microwave Filters, Impedance Matching Networks, and Coupling Structures, Artech House, Dedham, Mass., 1980.
[6] A. V. Oppenheim, R.W. Schafer, and J.R. Buck, Discrete-Time Signal Processing, 2nd Ed., Prentice Hall, Inc, 1999.
[7] John G. Proakis and Dimitris G. Manolakis, Digital Signal Processing: Principles, Algorithms and Applications, 4nd Ed., 2007.
[8] Simon Haykin, Adaptive Filter Theory, 2nd Ed., Prentice Hall, Inc, 1991.
[9] D. K. Cheng, Field and Wave Electromagnetics, Addison-wesley Publishing Company, Inc., 1989.
[10] K. C. Gupta, R. Garg, I.Bahl, and P.Bhartia, Microstrip Lines and Slotlines, 2nd Ed., Artech house, Dedham, Mass., 1996
[11] K. Kurada, General properties and synthesis of transmission-line networks, in Microwave Filters and Circuits, New York: Academic, 1970.
[12] Samuel Y.Liao, Microwave circuit analysis and amplifier design, Prentice-hall, Inc., Englewood Cliffs, New Jersey, 1987.
[13] Da-Chiang Chang, “Discrete-Time Domain Techniques for the Design of Microwave Filters,” Nation Taiwan University of Science and Technology, July, 1998.
[14] Chih-Hao Lu, “Design of Broadband Amplifier Embedded with Filter using Discrete-Time Technique,” Nation Taiwan University of Science and Technology, July, 2011.
[15] R. Levy, R. V. Snyder, and G. Matthaei, “ Design of Microwave Filters,” IEEE Trans. Microwave Theory Tech., vol. 50, no. 3, pp. 783-793, March 2002.
[16] W. W. Mumford, “ Maximally Flat Filters in Waveguide,” Bell Syst. Tech. J., vol.27, pp.648-714, Oct. 1948
[17] E. Green, “Synthesis of Ladder Networks to Give Butterworth or Chebyshev Response in the Passband,” Proc. Inst. Elec. Eng., vol. 101 IV, p. Monograph no.88, 1954.
[18] R. Levy, “An Improved Design Procedure for the Multi-section Generalized Microwave Filters,” Proc., Inst. Elec. Eng., vol. 104C, pp. 173-182, Sept, 1957.
[19] A. E. Williams, “A Four-cavity Elliptic Waveguide Filter,” IEEE Trans. Microwave Theory Tech., vol. MTT-18, pp.1109-1114, Dec. 1970.
[20] W. C. Tang and S. k. Chaudhuri, “Triple-mode True Elliptic-Function Filter Realization for Satellite Transponders,” in 1983 IEEE MTT-S Int. Microwave Symp. Dig., pp.83-85, IEEE cat NO. 83CH1871-3, May 1983
[21] R. Levy and I Whiteley, “Synthesis of Distributed Elliptic-function Filter from Lumped-constant Prototypes,” IEEE Trans. Microwave Theory Tech., vol. Mtt-14, pp. 506-517, Nov. 1966.
[22] M. C. Horton and R. J. Wenzel, “The Digital Elliptic Filter-a Compact Sharp- cut-off Design for Wide Bandstop or Bandpass Requirements,” IEEE Trans. Microwave Theory Tech., vol. Mtt-15, pp.307-314, May 1967.
[23] J. D. Rhodes , “The Stepped Digital Elliptic Filter,” IEEE Trans. Microwave Theory Tech., vol. Mtt-17, pp. 178-184, Apr.1969
[24] R. Levy and J. D. Rhodes, “A Combine Elliptic Filter,” IEEE Trans Microwave Theory Tech., vol. Mtt-19, pp.26-29, Jan. 1971.
[25] R. Levy, “Tables of Element Values for the Distributed Low-pass Prototype Filter,” IEEE Trans Microwave Theory Tech., vol. Mtt-13, pp.514-536, Sept. 1965.
[26] R. Levy and T. E. Rozzi, “Precise Design of Coaxial Low-pass Filters,” IEEE Trans Microwave Theory Tech., vol. Mtt-16, pp.142-14729, Mar. 1968.
[27] R. Levy, “Tappered Corrugated Waveguide Lowpass Filters,” IEEE Trans Microwave Theory Tech., vol. Mtt-21, pp.526-532, June. 1973.
[28] G. L. Matthaei , “Interdigital Band-pass Filters,” IRE Trans. Microwave Theory Tech., vol. MTT-10, pp. 479-491, Nov 1962.
[29] G. L. Matthaei , “Comb-line Band-pass Filters of Narrow or Moderate Band width ,” Microwave J., vol. 6 pp. 82-91, Aug. 1963.
[30] R. J. Wenzel, “Exact Theory of Interdigital Bandpass Filters and Related Coupled Structures,” IEEE Trans Microwave Theory Tech., vol. MTT-13, pp.559-575, Sept. 1965.
[31] R. J. Wenzel, “Synthesis of Combline and Capacitively Loaded Interdigital Band-pass Filters of Arbirtary Bandwidth,” IEEE Trans Microwave Theory Tech., MTT-19, pp.578-686, Aug. 1971.
[32] R. M. Fano and A. w. Lawson, Microwave Transmission Circuits. M. I. T Rad. Lab. Series, vol. 9, G. L. Ragan, Ed. New York: McGraw Hill, 1948.
[33] B. M. Schiffman and G. L. Matthaei, “Exact Design of Microwave Bandstop Filters,” IEEE Trans Microwave Theory Tech., vol.MTT-12, pp.6-15, Jan. 1964.
[34] R. J. Wenzel, “Exact Deign of TEM Microwave Networks Using Quarter-wave Lines,” IEEE Trans Microwave Theory Tech., vol. MTT-12, pp.94-111, Jan. 1964.
[35] R. Levy, “Theory of Direct Coupled-cavity Filters,” IEEE Trans Microwave Theory Tech., vol. Mtt-15, pp.340-348, June 1965.
[36] R. Levy, “A New Class of Distributed Prototype Filters, with Application to Mixed Lumped/Distributed Component Design,” IEEE Trans Microwave Theory Tech., vol. MTT-18, pp.1064-1071, Dec. 1970.
[37] H. J. Orchard, “Formulas for Ladder Filters,” Wireless Engineer, vol.30, pp.3-5, Jan. 1953.
[38] S. B. Cohn, “Direct-coupled-resonator Filters,” Proc. IRE, vol.45, pp.187-196, 1957.
[39] L. Young, “Direct-coupled Cavity Filters for Wide and Narrow Band-Widths,” IEEE Trans Microwave Theory Tech., vol.MTT-11, pp.162-178, 1963.
[40] H. Ozaki and J. Ishii, “Synthesis of a Class of Stripline Filters,” IRE Trans. Circuit Theory, vol. CT-5, pp.104-109, June 1958.
[41] S. B. Cohn, “Parallel-coupled Transmission-line Resonator Filter,” IRE Trans. Microwave Theory Tech., vol. MTT-6, pp.223-231, Apr. 1958.
[42] A. E. Atia and A. E. Willams, “Narrow Bandpass Waveguide Filters,” IEEE Trans Microwave Theory Tech., vol. MTT-20, pp.258-265, Apr.1972.
[43] A. E. Atia and A. E. Willams, “Now-minimum-phase Optimum-amplitude Band-pass Waveguide Filters,” IEEE Trans Microwave Theory Tech., vol. MTT-22, pp.425-431, Apr.1974.
[44] R. Levy, “A Generalized Design Technique for Practical Distributed Reciprocal Ladder Networks,” IEEE Trans Microwave Theory Tech., vol. Mtt-21, pp.519-526, Aug. 1973.
[45] J. S. Wong, “Microwstrip Tapped-line Design,” IEEE Trans Microwave Theory Tech., vol. MTT-27, pp.44-50, Jan. 1979
[46] B. Easter and K.A. Merza, “Parallel-coupled –line Filters for Inverted- microstrip and Suspended-substrate MIC’s,” in 11th Eur. Microwave conf. Proc., pp.164-168, Sevenoaks, kent, England: Microwave Exhibitions and Publishers Ltd.
[47] R. J. Wenzel and W. G. Erlinger, “Problems in Microstrip Filter Design,” in 1981 IEEE MTT-S Int. Microwave Symp. Dig., pp.203-205, IEEE cat. No. 81CH1592-5 MTT.
[48] B. J. Minis, “Classes of Sub-miniature Microwave Printed Circuit Filters with Arbitrary Passband and Stopband Widths,” IEEE Trans Microwave Theory Tech., vol. Mtt-30,pp.1893-1900, Nov. 1982.
[49] J. P. Rooney and L. M. Underkofler, “Printed Circuit Integration of MW Filters,” Microwave J., vol.21, pp.68-73, Sept. 1978.
[50] J. D. Rhodes, “Suspended substrates provide alternative to coax,” Microwave syst. News, vol. 9, pp. 134-143, Aug. 1979.
[51] S. B. Cohn, “Microwave Bandpass Filters Containing High-Q Dielectric Resonators,” IEEE Trans Microwave Theory Tech., vol.Mtt-16, pp.218-227, Apr. 1968.
[52] D. J. Masse and R. A. Pucel, “A Temperature-stable Bandpass Filter Using Dielectric Resonators,” Proc. IEEE, vol. 60, pp.730-731, June 1972.
[53] P.I. Richard, “Resistor-transmission line circuits”, Proc. IRE, vol. 36, pp.217- 220, Feb, 1948.
[54] D.-C. Chang and C.-W. Hsue, “Design and implementation of filters using transfer functions in the Z domain”, IEEE Trans. Microwave Theory Tech., vol.50, pp.979-985, May 2001.
[55] D.-C. Chang and C.-W. Hsue, “Wide-band equal-ripple filters in nonuniform transmission lines”, IEEE Trans. Microwave Theory Tech., vol.50, pp.1114-1119, April 2002.
[56] Hettak, K., Dib N., A.-F. Sheta, and S. Toutain, “A class of novel uniplanar series resonators and their implementation in original applications,” IEEE Trans. Microwave Theory Tech., vol. 46, no. 9, pp. 1270-1276, Sep. 1998.
[57] J.-T. Kuo, W.-H. Hsu, and W. T. Huang, “Parallel coupled microstrip filters with suppression of harmonic response,” IEEE Microwave Wireless Component Letter, vol. 12, no. 10, pp. 383–385, Oct. 2002.
[58] W.H. Tu and K. Chang, “Compact second harmonic-suppressed bandstop and bandpass filters using open-stubs,” IEEE Trans. Microwave Theory Tech., vol. 54, no. 6, pp.2497-2502, June, 2006.
[59] R.N. Bates, “Design of microstrip spurline bandstop filters,” IEE Journal on Microwaves, Optics and Acoustics, vol. 1, no. 6, pp. 209-214, Nov. 1977.
[60] H. Shaman and J.-S. Hong, “Ultra-Wideband (UWB) bandpass filter with embedded band notch structures,” IEEE Microwave Wireless Component Letter, vol. 17, no. 3, pp. 193-195, March 2007.
[61] P. A. Regalia, S. K. Mitra and P. P. Vaidyanathan, “The digital all-pass filter: A versatile signal processing building block, “Proc. IEEE, vol. 76, pp.19-37, 1988.
[62] C.-W. Hsue, C.-W. Ling and W.-T. Hung, “Discrete-time notch filter and its application to microwave filter,” Microwave and Optical Technology Letters, vol. 50, no. 6, pp. 1596-1600, June 2008.
[63] L.-C. Tsai and C.-W. Hsue, “Dual-band bandpass filters using equal-length, coupled-serial-shunted lines and Z-transform technique,” IEEE Trans. Microwave Theory Tech., vol.52, no.4, pp. 1111-1117, April 2004.
[64] Hanselman, D. and Littlefield, B., “Mastering MATLAB 5,” Prentice Hall, 1998.
[65] Huelsman, L.P., “Active and Passive Analog Filter Design,” McGraw-Hall, 1993.
[66] L. Zhu, S. Sun and W. Menzel, “Ultra-wideband (UWB) bandpass filters using
multiple-mode resonator,” IEEE Microwave Wireless Component Letter, vol. 15, no. 11, pp. 796-798, Nov., 2005.
[67] Federal Communications Commission, “Revision of par 15 of the commission’s rules regarding ultra-wideband transmission systems,” Tech. Rep., ET-Docket 98-153, FCC02-48, Apr. 2002.
[68] M. L. Edwards, J. H.Sinsky, “A new criterion for Linear 2-Port Stability Using a Single Geometrically Derived Parameter,” IEEE Trans. Microwave Theory Tech., vol. 40, no. 12, pp. 2303-2311. Dec. 1992,
[69] Johnson,K.M., ”Large signal GaAs MESFET oscillator design,” IEEE Trans. Microwave Theory Tech., vol. MTT27, no.3, , pp.217-227 ,March 1979.
[70] M. L. Edwards, J. H.Sinsky, “A new criterion for Linear 2-Port Stability Using a Single Geometrically Derived Parameter,” IEEE Trans. Microwave. Theory Tech., vol.40, no.12, 2303-2311, Dec. 1992.
[71] Sumitomo Electric Device Innovations, Inc.: http://www.sedi.co.jp/e/index.html.
[72] Y. Chung, S. Cai, W. Lee, Y. Lin, C.P. Wen, K.L. Wang and T. Itoh,”High power wideband AIGaN/GaN HEMT feedback amplifier module with drain and feedback loop inductances,” Electronics Letters, vol.37, no.19, pp.1199-1200, Sept. 2001.
[73] C. M. Peng and I. F. Chen, “Modeling printed Monopole antenna with Coplanar Ground-plane by Gaussian filter model analysis,” International Journal of Applied Electromagnetics and Mechanics, vol.36, no.3, pp.243-251, Aug, 2011.
[74] Malika Ourabia, Rachida Touhami and Henri Baudrand,“New approach for efficient planar multiport using the concept of edge line and the boundary-element method,” International Journal of Applied Electromagnetics and Mechanics, vol.35, no. 3, pp.151-163, March. 2011,

[75] C.-W. Hsue, L.-C. Tsai and Y.-H. Tsai, “Time-constant control of microwave integrators using transmission lines,” IEEE Trans. Microwave Theory Tech., vol. 54, no. 3, pp.1043-1047, March 2006.
[76] Tompkins, Willis J., “Design of microcomputer-based medical instrumentation,” Prentice-Hall, 1981.
[77] Ching-Wen Hsue, Lin-Chuan Tsai and Kuo-Lung Chen, “Implementation of First-Order and Second-Order Microwave Differentiators,” IEEE trans. Microwave Theory Tech., vol. 52 , pp.1443 – 1448, May 2004.
[78] J. Wang, J.-Li Zhao, and J.-L. Li, “Compact UWB bandpass filter with triple notched bands using parallel U-shaped defected microstrip structure,” Electronics Letters, vol. 50, pp.98-91, Jan. 2014.
[79] X. Jin, W. Wen, and M. Chen, “Compact Microstrip Dual-/Tri-/Quad-Band Bandpass Filter Using Open Stubs Loaded Shorted Stepped-Impedance Resonator,” IEEE trans. Microwave Theory Tech., vol. 61 , pp.3187-3199, Sept. 2013.
[80] C.-F. Chen , “A compact reconfigurable microstrip dual-band filter using varactor-tuned stub-loaded stepped-impedance resonators, ” Microwave and Wireless Components Letters, vol. 23, pp.16-18, Jan. 2013.

無法下載圖示 全文公開日期 2020/01/30 (校內網路)
全文公開日期 本全文未授權公開 (校外網路)
全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
QR CODE