簡易檢索 / 詳目顯示

研究生: 蔡一賢
Yi-Hsien Tsai
論文名稱: 利用非均勻傳輸線設計及製作微波濾波器
Design and Implementation of Microwave Filters Using Nonuniform Lines
指導教授: 徐敬文
Ching-Wen Hsue
口試委員: 黃進芳
Jhin-Fang Huang
蔡智明
Chih-Ming Tsai
魏炯權
Chung-Chuang Wei
黃正亮
Cheng-Liang Huang
學位類別: 碩士
Master
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2005
畢業學年度: 93
語文別: 英文
論文頁數: 69
中文關鍵詞: Z轉換技術非均勻傳輸線
外文關鍵詞: Z-transform techniques, non-uniform lines
相關次數: 點閱:256下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   在本論文中,我們將提出一種製作微波濾波器的新方法。此方法係先找出濾波器在z域中的系統方程式,然後搭配由本論文中所推導出來的各式傳輸線的鏈散矩陣,以串接、並接傳輸線的方式來完成濾波器的設計。
      而在本論文中,我們提出兩種濾波器的架構,一種是串-並接傳輸線的架構,另一種則是串接傳輸線的架構。我們是依據濾波器的零點位置來決定選用何種濾波器的架構以及傳輸線的型式。然後,再利用最佳化的演算法調整電路中之各段傳輸線的阻抗值,以使濾波器的轉移函數可以非常接近系統函數所描述的特性。
      最後,我們將以本論文中所提出的設計方法實現三種濾波器,包括了柴比雪夫帶通濾器、巴特渥爾滋帶拒濾波器,以及微波積分器。我們將量測各個濾波器的散射參數並與理論值進行比對,以證明本方法的可行性。  


      In this thesis, we propose a new design method to implement a microwave filter. In this method, the system function of filter in the Z-domain is found first. Then with the chain-scattering matrices of variety transmission-lines derived form the thesis, the design of filter is finished with the cascading serial and shunt transmission-line.
      We propose the constructions of two filters, serial-shunted transmission-line construction and serial transmission-line construction. According to the zero location, we determine the construction of filter and the form of transmission-line. After that, the design process is finished by using optimization algorithms to tune the values of characteristic impedances of each transmission-line section so that the transfer function of filter will close the system function.
      Eventually, we make use of the design method that we proposed to implement three types of filters, Chebyshev band-pass filter, Butterworth band-stop filter, and microwave integrator. We will measure the S-Parameter of all the filters and compare with the theoretical values to demonstrate the validity of the design method.

    摘要 I Abstract II 誌謝 III Contents IV List of Figures VI Chapter 1 Introduction 1 1.1 Motivation 1 1.2 Proposal 2 1.3 Outline of Chapters 3 Chapter 2 Basic Theory 4 2.1 Discrete-Time Filter 4 2.2 Bilinear Transformation 6 2.3 Microstrip Line 8 2.4 Coupled Line 10 Chapter 3 Transfer Functions of Transmission Line and Cascaded Networks 13 3.1 Chain-Scattering Parameters 14 3.2 Fundamental Circuits and Their Chain-Scattering Parameters 16 3.2.1 A Serial Transmission-Line Section 16 3.2.2 An Open-Circuited Single-Section Stub 20 3.2.3 A Short-Circuited Single-Section Stub 22 3.2.4 An Open-Circuited Double-Section Stub 24 3.2.5 A Symmetric Parallel Coupled Line 26 3.3 Transfer Functions of Cascaded Networks 29 3.4 Summary 33 Chapter 4 Method for Design of the Microwave Filters 34 4.1 Design of the Filters by Serial-Shunted Method 34 4.2 Design of the Filters by Serial Method 37 4.3 Programming the Synthesis Algorithm 39 4.4 Summary 41 Chapter 5 Implementation and Experimental Results 43 5.1 A Chebyshev Band-Pass Filter 44 5.2 A Butterworth Band-Stop Filter 49 5.3 A Microwave Integrator 54 Chapter 6 Conclusion 64 6.1 Conclusion 64 6.2 Future Work 64 Bibliography 66 作者簡介 69

    [1] D. M. Pozar, Microwave Engineering, 2nd Ed., John Wiley& Sons, Inc., 1998.
    [2] R. J. Weber, Introduction to Microwave Circuits, IEEE Press, Inc., 2000.
    [3] J. S. G. Hong and M.J. Lancaster, Microstrip Filters for RF/Microwave Applications, John Wiley& Sons, Inc., 2001.
    [4] P.I. Richard, “Resistor-transmission line circuits”, Proc. IRE, vol, 36, pp.217-220, Feb, 1948.
    [5] K. Kurada, “General properties and synthesis of transmission-line networks,” in Microwave Filters and Circuits, A. Mstsumoto, Ed. New York: Academic, 1970.
    [6] Da-Chiang Chang, “Discrete-Time Domain Techniques for the Design of Microwave Filters”, Nation Taiwan University of Science and Technology, July, 1998.
    [7] Lin-Chuan Tsai, “Filters Synthesis Using Equal-Length Couple-Serial-Shunted- Lines and Z-Transform Technique”, Nation Taiwan University of Science and Technology, July, 2004.
    [8] Simon Haykin, Adaptive Filter Theory, 2nd Ed., Prentice Hall, Inc, 1991.
    [9] A. V. Oppenheim, R.W. Schafer, and J.R. Buck, Discrete-Time Signal Processing, 2nd Ed., Prentice Hall, Inc, 1999.
    [10] I.J Bahl and D.k. Trivedi, “ A Designer’s Guide to Microstrip Line”, Microvave, May 1977.
    [11] K. C. Gupta, R. Garg, and I. J. Bahl, Microstrip Liines and Slotilines, Artech House, Dedham, Mass.
    [12] Foundations for Microwave Engineering, IEEE Press Series on Electromagnetic Wave Theory, 2002.
    [13] D. K. Cheng, Field and Wave Electromagnetics, Addison-Wesley Publishing Company, Inc., 1989.
    [14] Da-Chiang Chang and Ching-Wen Hsue, “Design and implementation of filters using transfer functions in the Z domain”, IEEE Trans. Microwave Theory Tech., vol.50, pp.979-985, May 2001.
    [15] Da-Chiang Chang and Ching-Wen Hsue, “Wide-band equal-ripple filters in nonuniform transmission lines”, IEEE Trans. Microwave Theory Tech., vol.50, pp.1114-1119, April 2002.
    [16] Robert S. Elliott, An Introduction to Guided Waves and Microwave Circuits. Pretice-hall, 1993.
    [17] R.E Collin, Foundation for Microwave Engineer, New York: McGraw-Hall, Inc., 1993.
    [18] Lin-Chuan Tsai, Hwan-Mei Chen and Ching-Wen Hsue, “Z-Domain Formulations of Equal-Length Coupled-Serial-Shunted Lines and Their Applications to Filters,” IEE Proceedings-Microwave, Antenna and Propagation, vol. 151, pp.97-103, April 2004.
    [19] Lin-Chuan Tsai and Ching-Wen Hsue, ”Dual-Band Bandpass Filters Using Equal-length Coupled-Serial-Shunted Lines and Z-transform Technique”, IEEE Trans. Microwave Theory Tech., vol.52, NO.4, April 2004.
    [20] Tompkins, Willis J., “Design of microcomputer-based medical instrumentation
    ,” Prentice-Hall, 1981.
    [21] Ching-Wen Hsue, Lin-Chuan Tsai and Kuo-Lung Chen, “Implementation of First-Order and Second-Order Microwave Differentiators,” IEEE trans. Microwave Theory Tech., Vol. 52 , pp.1443 – 1448, May 2004.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE