簡易檢索 / 詳目顯示

研究生: 吳皇憲
HUANG-HSIEN WU
論文名稱: 聚二甲基矽氧烷奈米柱陣列表面接枝甲基丙烯酸-甲基丙烯酸磺基甜菜鹼共聚高分子用於大腸癌循環腫瘤細胞檢測
Fabrication of Poly(Methacrylic acid-co- sulfobetaine methacrylate) via Surface-Initiated Atom Transfer Radical Polymerization on Nanopillar-Array of Polydimethylsiloxane for Detection of Circulating Tumor Cells
指導教授: 陳建光
Jem-Kun Chen
口試委員: 鄭智嘉
Chih-Chia Cheng
李愛薇
Ai-Wei Lee
學位類別: 碩士
Master
系所名稱: 工程學院 - 材料科學與工程系
Department of Materials Science and Engineering
論文出版年: 2016
畢業學年度: 104
語文別: 中文
論文頁數: 102
中文關鍵詞: 聚二甲基矽氧烷原子轉移自由基聚合法共聚高分子循環腫瘤細胞抗生物沾黏
外文關鍵詞: Anti-Biofouling, Random copolymers, Polydimethylsiloxane, Atom transfer radical polymerization, circulating tumor cells
相關次數: 點閱:399下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究為設計一共聚高分子材料以偵測人血中的循環腫瘤細胞(CTCs),在檢測的同時屏除白細胞的干擾。基材為聚二甲基矽氧烷(Polydimethylsiloxane,PDMS),性質安定且具生物相容性,以液態PDMS覆蓋圖案化的矽晶圓加熱固化,依光罩的設計翻印出高表面積的奈米柱型陣列。以此結構在基材表面以原子轉移自由基聚合法製備共聚高分子刷:(Poly(methacrylic acid),PMAA)、(Poly(sulfobetaine methacrylate),PSBMA),PMAA之羧基可接上streptavidin與anti-EpCAM(Biotin)結合以偵測CTCs,而PSBMA的雙離子性可抵抗生物分子沾黏,達到抗沾黏且可抓取特定細胞的目的。
    以不同的高分子比例製備共聚高分子刷,測試出在三種比例中PMAA:PSBMA(75:25)對CTCs專一性抓取率達到了最高的61.7%,且具有96%以上的抗白細胞沾黏能力。在仿臨床實驗中可從10至100顆每毫升下偵測到CTCs,並比PMAA表面抓取率高了6%。
    在微流道系統中加入抗沾黏功能,使低濃度液體可重複性流通抓取區而不被白細胞沾黏,有望發展為拋棄式(disposable)的快篩晶片。


    In this thesis, we introduced random copolymers on nanopillar-array of polydimethylsiloxane (PDMS) elastomer substrate to capture the colon circulating tumor cells(CTCs) from peripheral blood of colon cancer patients. CTCs detection always influenced by extensive leukocyte contamination in human blood. We fabricated random copolymers of Poly(methacrylic acid) (PMAA) and poly(sulfobetaine methacrylate) (PSBMA) on patterned PDMS. Patterned PDMS was a biocompatible and stable substrate with high surface area. PSBMA was a kind of anti-biofouling polymer to prevent leukocyte adhesion. Carboxyl groups of PMAA were the media to immobilize antibody biotin labeling (anti-EpCAM biotin) for CTCs capture. The results suggest the composition ratio of PMAA/PSBMA copolymer is 75/25 according to the results of anti-biofouling and captured rate properties.
    The modified PDMS donated 96% of anti-biofouling property for leukocyte and 61.7% of specific captured rate of CTCs. In clinical simulation, specific capture of CTCs from the solution in 0.1mL medium increased by ca. 10.8%.
    The current methodologies for CTC capture in peripheral blood included multiple procedural steps with high cost. Therefore, our research had high potential to capture CTCs on low-cost microfluidic systems.

    摘要 I Abstract II 致謝 IV 目錄 VI 表目錄 IX 圖目錄 X 1. 前言 1 1.1. 研究背景 1 1.2. 研究動機與目的 2 2. 理論與文獻回顧 3 2.1. 微流體元件簡介 3 2.2. 聚二甲基矽氧烷(PDMS) 5 2.3. 微影製程(Photolithography) 6 2.4. 高分子刷簡介 8 2.5. 自組裝單分子層(SAM) 12 2.6. 原子轉移自由基聚合法(ATRP) 14 2.7. 液態除氣法 18 2.8. 聚甲基丙烯酸(PMAA) 20 2.9. 聚甲基丙烯酸磺基甜菜鹼(PSBMA) 21 2.10. 共價鍵固定法(EDC/NHS reaction) 22 2.11. 生物親和法(Streptavidin-biotin system) 24 3. 儀器簡介 26 3.1. 電漿蝕刻機(Plasma Machine) 26 3.2. 原子力顯微鏡(AFM) 28 3.3. 掃描式電子顯微鏡(SEM) 33 3.4. X光光電能譜儀 (XPS) 34 4. 實驗流程與方法 37 4.1. 實驗流程圖 37 4.2. 實驗藥品 38 4.3. 實驗儀器 42 4.4. 實驗步驟 44 4.4.1. 微影製程製備圖案化光阻層 44 4.4.2. 圖案化轉印於PDMS薄膜 47 4.4.3. PDMS表面改質 47 4.4.4. 表面改質Streptavidin 52 4.4.5. 表面改質Anti-EpCAM(Biotin) 53 4.4.6. 白血球抗沾黏實驗 53 4.4.7. 細胞培養、標記、染色 54 4.4.8. 抓取細胞 55 5. 結果與討論 56 5.1. 圖案化表面分析 56 5.1.1. 微影製程光阻圖案 56 5.1.2. PDMS圖案化轉印表面形貌 58 5.2. 光學性質 61 5.2.1. 可見光繞射 61 5.2.2. 雷射繞射 62 5.2.3. 雷射細胞偵檢 64 5.3. PDMS表面高分子刷分析 66 5.3.1. ESCA光譜 66 5.3.2. 接觸角親疏水測定 73 5.3.3. 高分子刷表面分析 76 5.3.4. 液態高分子刷表面分析 79 5.4. 白血球抗沾黏測定 81 5.5. Anti-EpCAM PDMS抓取循環腫瘤細胞 84 5.5.1. 奈米三維結構抓取細胞之表現 84 5.5.2. 專一性抓取能力 86 5.5.3. 模擬大腸癌病患血液實驗 88 6. 結論 91 參考文獻 92

    [1]MANZ, Andréas; GRABER, N.; WIDMER, H. áM. Miniaturized total chemical analysis systems: a novel concept for chemical sensing. Sensors and actuators B: Chemical, 1990, 1.1: 244-248.
    [2] H. Xiao, "半導體製程技術導論, 羅正忠和張鼎張譯," ed: 二版, 臺灣培生教育出版, 臺北市, 民國九十三年, 2007.
    [3] DU, Ke, et al. Wafer-Scale pattern transfer of metal nanostructures on polydimethylsiloxane (PDMS) substrates via holographic nanopatterns. ACS applied materials & interfaces, 2012, 4.10: 5505-5514.
    [4] XU, Jingdong, et al. Room-temperature imprinting method for plastic microchannel fabrication. Analytical Chemistry, 2000, 72.8: 1930-1933.
    [5] BUNJES, N., et al. On the swelling behavior of linear end-grafted polystyrene in methanol/toluene mixtures. Colloid and Polymer Science, 2004, 282.8: 939-945.
    [6] DE GENNES, PrG. Conformations of polymers attached to an interface.Macromolecules, 1980, 13.5: 1069-1075..
    [7] ZHAO, Bin; BRITTAIN, William J. Polymer brushes: surface-immobilized macromolecules. Progress in Polymer Science, 2000, 25.5: 677-710.
    [8] MILNER, S. T. Polymer brushes. Science, 1991, 251.4996: 905-914.
    [9] EJAZ, M.; TSUJII, Y.; FUKUDA, T. Controlled grafting of a well-defined polymer on a porous glass filter by surface-initiated atom transfer radical polymerization. Polymer, 2001, 42.16: 6811-6815.
    [10] BIESALSKI, M.; RÜHE, Jürgen. Preparation and characterization of a polyelectrolyte monolayer covalently attached to a planar solid surface.Macromolecules, 1999, 32.7: 2309-2316.
    [11] BIESALSKI, M.; RÜHE, Jürgen. Swelling of a polyelectrolyte brush in humid air. Langmuir, 2000, 16.4: 1943-1950.
    [12] KOPF, A., et al. On the adsorption process in polymer brushes: a Monte Carlo study. Macromolecules, 1996, 29.5: 1433-1441.
    [13] HAN, CHENG-ZUO. Fabrication of the patterned Poly (methacrylic acid) brushes on silicon wafer via surface-initiated ATRP for covalently coupling antibody-adhesive gelatin. 2013.
    [14] BIGELOW, W. C.; PICKETT, D. L.; ZISMAN, W. A. Oleophobic monolayers: I. Films adsorbed from solution in non-polar liquids. Journal of Colloid Science, 1946, 1.6: 513-538.
    [15] NUZZO, Ralph G.; ALLARA, David L. Adsorption of bifunctional organic disulfides on gold surfaces. Journal of the American Chemical Society, 1983, 105.13: 4481-4483.
    [16] LAIBINIS, Paul E., et al. Comparison of the structures and wetting properties of self-assembled monolayers of n-alkanethiols on the coinage metal surfaces, copper, silver, and gold. Journal of the American Chemical Society, 1991, 113.19: 7152-7167.
    [17] GOPIREDDY, Deepthi; HUSSON, Scott M. Room temperature growth of surface-confined poly (acrylamide) from self-assembled monolayers using atom transfer radical polymerization. Macromolecules, 2002, 35.10: 4218-4221.
    [18] YAMADA, Ryo; WANO, Hiromi; UOSAKI, Kohei. Effect of temperature on structure of the self-assembled monolayer of decanethiol on Au (111) surface.Langmuir, 2000, 16.13: 5523-5525.
    [19] DELAMARCHE, E. a al, et al. Thermal stability of self-assembled monolayers.Langmuir, 1994, 10.11: 4103-4108.
    [20] HOWARTER, John A.; YOUNGBLOOD, Jeffrey P. Optimization of silica silanization by 3-aminopropyltriethoxysilane. Langmuir, 2006, 22.26: 11142-11147.
    [21] SIMON, A., et al. Study of two grafting methods for obtaining a 3-aminopropyltriethoxysilane monolayer on silica surface. Journal of colloid and interface science, 2002, 251.2: 278-283.
    [22] MATYJASZEWSKI, Krzysztof; XIA, Jianhui. Atom transfer radical polymerization. Chemical reviews, 2001, 101.9: 2921-2990.
    [23] MATYJASZEWSKI, Krzysztof. Controlled radical polymerization. Current Opinion in Solid State and Materials Science, 1996, 1.6: 769-776.
    [24] WANG, Jin-Shan; MATYJASZEWSKI, Krzysztof. Controlled/" living" radical polymerization. Halogen atom transfer radical polymerization promoted by a Cu (I)/Cu (II) redox process. Macromolecules, 1995, 28.23: 7901-7910.
    [25] PATTEN, Timothy E., et al. Polymers with very low polydispersities from atom transfer radical polymerization. Science, 1996, 272.5263: 866-868.
    [26] PYUN, Jeffrey; MATYJASZEWSKI, Krzysztof. Synthesis of nanocomposite organic/inorganic hybrid materials using controlled/“living” radical polymerization. Chemistry of Materials, 2001, 13.10: 3436-3448.
    [27] MATYJASZEWSKI, Krzysztof; NAKAGAWA, Yoshiki; GAYNOR, Scott G. Synthesis of well‐defined azido and amino end‐functionalized polystyrene by atom transfer radical polymerization. Macromolecular rapid communications, 1997, 18.12: 1057-1066.
    [28] MATYJASZEWSKI, Krzysztof, et al. Controlled/“Living” Radical Polymerization of Styrene and Methyl Methacrylate Catalyzed by Iron Complexes 1.Macromolecules, 1997, 30.26: 8161-8164.
    [29] MASCI, Giancarlo; GIACOMELLI, Laura; CRESCENZI, Vittorio. Atom Transfer Radical Polymerization of N‐Isopropylacrylamide.
    Macromolecular rapid communications, 2004, 25.4: 559-564.
    [30] SANTONICOLA, M. Gabriella, et al. Reversible pH-controlled switching of poly (methacrylic acid) grafts for functional biointerfaces. Langmuir, 2010, 26.22: 17513-17519.
    [31] SANJUAN, Sarah; TRAN, Yvette. Stimuli-responsive interfaces using random polyampholyte brushes. Macromolecules, 2008, 41.22: 8721-8728.
    [32] PATTEN, Timothy E.; MATYJASZEWSKI, Krzysztof. Atom transfer radical polymerization and the synthesis of polymeric materials. Advanced Materials, 1998, 10.12: 901-915.
    [33] Synthesis of Poly(methacrylic acid) Brushes via Surface-Initiated Atom Transfer Radical Polymerization of Sodium Methacrylate and Their Use as Substrates for the Mineralization of Calcium Carbonate
    [34] XU, F. J., et al. Functionalized polylactide film surfaces via surface-initiated ATRP. Macromolecules, 2011, 44.7: 2371-2377.
    [35] XU, F. J.; WANG, Z. H.; YANG, W. T. Surface functionalization of polycaprolactone films via surface-initiated atom transfer radical polymerization for covalently coupling cell-adhesive biomolecules. Biomaterials, 2010, 31.12: 3139-3147.
    [36] COSTANTINI, Francesca, et al. Enzyme-functionalized polymer brush films on the inner wall of silicon–glass microreactors with tunable biocatalytic activity.Lab on a Chip, 2010, 10.24: 3407-3412.
    [37] GREEN, N. Michael. Avidin. Advances in protein chemistry, 1974, 29: 85-133.
    [38] SMITH, Cassandra L.; MILEA, Jaqueline S.; NGUYEN, Giang H. Immobilization of nucleic acids using biotin-strept (avidin) systems. In:Immobilisation of DNA on Chips II. Springer Berlin Heidelberg, 2005. p. 63-90.
    [39] BONTEMPO, Debora; MAYNARD, Heather D. Streptavidin as a macroinitiator for polymerization: in situ protein-polymer conjugate formation. Journal of the American Chemical Society, 2005, 127.18: 6508-6509.
    [40] HUANG, Bi-Hai, et al. Surface labeling of enveloped viruses assisted by host cells. ACS chemical biology, 2012, 7.4: 683-688.
    [41] LEHNERT, Michael, et al. Adsorption and conformation behavior of biotinylated fibronectin on streptavidin-modified TiOX surfaces studied by SPR and AFM.Langmuir, 2011, 27.12: 7743-7751.
    [42] JOO, Kye-Il, et al. Site-specific labeling of enveloped viruses with quantum dots for single virus tracking. ACS nano, 2008, 2.8: 1553-1562.
    [43] KRUEGER, Anke, et al. Biotinylated nanodiamond: simple and efficient functionalization of detonation diamond. Langmuir, 2008, 24.8: 4200-4204.
    [44] MORRA, M., et al. On the aging of oxygen plasma-treated polydimethylsiloxane surfaces. Journal of Colloid and Interface Science, 1990, 137.1: 11-24.
    [45] ZELIKIN, Alexander N.; QUINN, John F.; CARUSO, Frank. Disulfide cross-linked polymer capsules: en route to biodeconstructible systems.Biomacromolecules, 2006, 7.1: 27-30.
    [46] GAZOULI, Maria, et al. Development of a quantum-dot-labelled magnetic immunoassay method for circulating colorectal cancer cell detection. World journal of gastroenterology: WJG, 2012, 18.32: 4419.
    [47] KOJIMA, Taisuke; TAKAYAMA, Shuichi. Patchy Surfaces Stabilize Dextran–Polyethylene Glycol Aqueous Two-Phase System Liquid Patterns. Langmuir, 2013, 29.18: 5508-5514.
    [48] JHON, Young K., et al. Formation of Polyampholyte Brushes via Controlled Radical Polymerization and Their Assembly in Solution. Langmuir, 2011, 28.1: 872-882.
    [49] COATS, A. W.; REDFERN, J. P. Thermogravimetric analysis. A review.Analyst, 1963, 88.1053: 906-924.
    [50] CHEN, Hao, et al. Thermal and bonding properties of nano size carbon black filled PDMS. 2009.
    [51] YAN, Junfeng, et al. CdS/CdSe quantum dot co-sensitized graphene nanocomposites via polymer brush templated synthesis for potential photovoltaic applications. Nanoscale, 2012, 4.6: 2109-2116.
    [52] Fang Lan, et al. Superparamagnetic Fe3O4/PMMA composite nanospheres as a nanoplatform for multimodal protein separation. RSC Advances, 2013, 3,1557
    [53] HAŠEK, Jiří; STREIBLOVÁ, Eva. Fluorescence microscopy methods. In:Yeast Protocols. Humana Press, 1996. p. 391-405.
    [54] YUK, Jong Seol, et al. Surface plasmon-coupled emission (SPCE)-based immunoassay using a novel paraboloid array biochip. Biosensors and Bioelectronics, 2010, 25.6: 1344-1349.
    [55] KANWAR, Shailender S., et al. The Wnt/β-catenin pathway regulates growth and maintenance of colonospheres. Molecular cancer, 2010, 9.1: 212.
    [56] CHEN, Jian; LI, Jason; SUN, Yu. Microfluidic approaches for cancer cell detection, characterization, and separation. Lab on a Chip, 2012, 12.10: 1753-1767.
    [57] WANG, Shunqiang; WAN, Yuan; LIU, Yaling. Effects of nanopillar array diameter and spacing on cancer cell capture and cell behaviors. Nanoscale, 2014, 6.21: 12482-12489.
    [58] WANG, Shutao, et al. Three‐Dimensional Nanostructured Substrates toward Efficient Capture of Circulating Tumor Cells. Angewandte Chemie, 2009, 121.47: 9132-9135.
    [59] YANAMOTO, Souichi, et al. Clinicopathologic significance of EpCAM expression in squamous cell carcinoma of the tongue and its possibility as a potential target for tongue cancer gene therapy. Oral oncology, 2007, 43.9: 869-877.
    [60] WENT, Philip TH, et al. Frequent EpCam protein expression in human carcinomas. Human pathology, 2004, 35.1: 122-128.
    [61] HSIAO, Yu‐Sheng, et al. 3D Bioelectronic Interface: Capturing Circulating Tumor Cells onto Conducting Polymer‐Based Micro/Nanorod Arrays with Chemical and Topographical Control. Small, 2014, 10.15: 3012-3017.
    [62] SUN, Wenjie, et al. High-Performance Size-Based Microdevice for the Detection Of Circulating Tumor Cells from Peripheral Blood in Rectal Cancer Patients. 2013.
    [63] VERMEULEN, Louis, et al. Wnt activity defines colon cancer stem cells and is regulated by the microenvironment. Nature cell biology, 2010, 12.5: 468-476.
    [64] PATRIARCA, Carlo, et al. Epithelial cell adhesion molecule expression (CD326) in cancer: a short review. Cancer treatment reviews, 2012, 38.1: 68-75.
    [65] KHASHAN, S. A.; ALAZZAM, A.; FURLANI, E. P. Computational Analysis of Enhanced Magnetic Bioseparation in Microfluidic Systems with Flow-Invasive Magnetic Elements. Scientific reports, 2014, 4.
    [66] ZHENG, Siyang; LIU, Jing-Quan; TAI, Yu-Chong. Streamline-based microfluidic devices for erythrocytes and leukocytes separation.Microelectromechanical Systems, 2008, 17.4: 1029-1038.
    [67] Lei Lei, Hao Li, et al. Diffraction Patterns of a Water-Submerged Superhydrophobic Grating under Pressure. Langmuir, 2010, 26 (5), pp 3666–3669

    無法下載圖示 全文公開日期 2021/07/26 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE