簡易檢索 / 詳目顯示

研究生: 翁振庭
Jhen-Ting Wong
論文名稱: 以非環狀二烯歧化聚合反應合成芴與咔唑包含萘二醯亞胺之無規共聚物及其結構與性質鑑定
Synthesis and Characterization of Fluorene and Carbazole Random Copolymers Containing Naphthalene Bisimide by Acyclic Diene Metathesis Polymerization
指導教授: 游進陽
Chin-Yang Yu
口試委員: 游進陽
Chin-Yang Yu
陳志堅
Jyh-Chien Chen
崛江正樹
Masaki Horie
學位類別: 碩士
Master
系所名稱: 工程學院 - 材料科學與工程系
Department of Materials Science and Engineering
論文出版年: 2019
畢業學年度: 107
語文別: 英文
論文頁數: 115
中文關鍵詞: 格拉布催化劑非環狀二烯歧化聚合咔唑萘二醯亞胺無規共聚物電荷轉移特性
外文關鍵詞: Grubbs catalyst, acyclic diene metathesis polymerization, fluorenes, carbazoles,, naphthalene bisimides, random copolymers, charge transfer interaction
相關次數: 點閱:216下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文擬利用格拉布催化劑與非環狀二烯歧化聚合反應合成新穎之聚芴與咔唑無規共聚物包含萘二醯亞胺結構。這些高分子材料具有潛力應用在有機場效電晶體與有機太陽能電池上。利用不同比例的施體、受體單體組成無規共聚物,探討其能階的可調變能力。透過核磁共振光譜,標定施體與受體的特徵峰,鑑定共聚物組成的比例。透過熱重分析及示差掃描熱量分析無規共聚物之熱穩定性及結晶性質。利用紫外-可見光譜儀與循環伏安儀分析,比較芴系列及其相似結構咔唑系列的光學、電化學及電荷轉移特性。在紫外-可見光譜上,咔唑系列整體較芴系列紅位移一些,是由於咔唑具有較強的推電子能力,並且各系列中,隨著施體單體增加,也有紅位移現象,這可能是因為增強了分子內電荷轉移作用。


    Two series of the new fluorene-based and carbazole-based random copolymers containing naphthalene bisimide can be synthesized by acyclic diene metathesis polymerization in the presence of the Grubbs catalyst. The copolymers were prepared with three different ratio (Donor: Acceptor = 2:1, 1:1, 1:2) in each series and the composition of fluorene, carbazole and naphthalene bisimide can be investigated by the integration of the corresponding signals using 1H NMR spectroscopy. The thermal stabilities and low crystallinities of the resulting polymers can be determined by TGA and DSC measurements. The optical and electronic properties of polymers containing fluorene and naphthalene bisimide (PFLNBI) and carbazole and naphthalene bisimide (PCZNBI) series can be examined by UV-Vis spectroscopy. In addition, the electrochemical properties of PFLNBI and PCZNBI series can be determined cyclic voltammetry. The charge transfer interaction and the optical band gap of these polymers will be investigated. The absorption wavelength at the low energy region for PCZNBI21, PCZNBI11 and PCZNBI12 polymers is longer than that of the PFLNBI21, PFLNBI11 and PFLNBI12 polymers. This indicates that the CZ units have stronger electron donating property than the FL units.

    Abstract i 中文摘要 ii Acknowledgement iii Table of content iv Chapter 1. Introduction and aims 1 1.1 Organic conjugated polymers 2 1.2 Band theory of solid 3 1.3 Charge transporting in conjugated polymers 5 1.4 Design of low bandgap conjugated polymers 7 1.4.1 Bandgap tuning of conjugated polymers 7 1.4.2 Solubility issues 14 1.4.3 Synthesis method of low bandgap conjugated polymers 15 1.5 Introduction of acyclic diene metathesis polymerization 17 1.5.1 Mechanism of acyclic diene metathesis polymerization 19 1.5.2 Catalyst for ADMET 20 1.6 Application of low bandgap conjugated polymers 21 1.6.1 Organic photovoltaics (OPV) 21 1.6.2 Organic field-effect transistors (OFETs) 25 1.7 Aim of the project 32 1.8 References 34 Chapter 2. Synthesis and characterization of fully conjugated random copolymers containing fluorene, carbazole and naphthalene bisimide 40 2.1 Synthesis and characterization of monomers 41 2.1.1 Synthesis of fluorene-based monomer (FL) 41 2.1.2 Synthesis of carbazole-based monomer (CZ) 43 2.1.3 Synthesis of naphthalene bisimide-based monomer (NBI) 46 2.2 Synthesis and characterization of polymers 47 2.2.1 Synthetic methods of ADMET polymerization 48 2.2.2 ADMET polymerization of fluorenes, carbazoles and naphthalene bisimides 51 2.2.3 Molecular weight and structure characterization 53 2.3 Properties of polymers 59 2.3.1 Thermal properties of polymers 59 2.3.2 Optical properties of polymers 62 2.3.3 Electrochemical characterization of polymers 68 2.4 References 73 Chapter 3. Conclusions 75 Chapter 4. Experimental section 76 4.1 General procedures 77 4.2 Synthesis of fluorene-based monomer (FL) 78 4.2.1 Synthesis of 2,7-dibromo-9H-fluorene (1) 78 4.2.2 Synthesis of 2,7-dibromo-9,9-dioctyl-9H-fluorene (2) 79 4.2.3 Synthesis of 9,9-dioctyl-9H-fluorene-2,7-dicarbaldehyde (3) 79 4.2.4 Synthesis of 9,9-dioctyl-2,7-divinyl-9H-fluorene (FL) 80 4.3 Synthesis of carbazole-based monomer (CZ) 81 4.3.1 Synthesis of 4,4'-dibromo-2-nitro-1,1'-biphenyl (4) 81 4.3.2 Synthesis of 2,7-dibromo-9H-carbazole (5) 81 4.3.3 Synthesis of 2-decyl-1-tetradecylbromide (6) 82 4.3.4 Synthesis of 2,7-dibromo-9-(2-decyltetradecyl)-9H-carbazole (7) 83 4.3.5 Synthesis of 9-(2-decyltetradecyl)-9H-carbazole-2,7-dicarbaldehyde (8) 84 4.4 Synthesis of naphthalene bisimide-based monomer (NBI) 86 4.4.1 Synthesis of 4,9-dibromoisochromeno[6,5,4-def]isochromene-1,3,6,8-tetraone (9) 86 4.4.3 Synthesis of 2,7-bis(2-ethylhexyl)-4,9-bis(4-vinylphenyl) benzo [lmn][3,8]phenanthroline-1,3,6,8(2H,7H)-tetraone (NBI) 87 4.5 Synthesis of homopolymers 88 4.5.1 Synthesis of PFL 88 4.5.2 Synthesis of PCZ 89 4.5.3 Synthesis of PNBI 89 4.6 General copolymerization procedure 90 4.6.1 Synthesis of random copolymers with different FL-NBI ratios. 90 4.6.2 Synthesis of random copolymers with different CZ-NBI ratios. 91 Appendix 93

    [1] A. J. Heeger, Angew. Chem. Int. Ed. 2001, 40, 2591-2611.
    [2] H. Usta, A. Facchetti, T. J. Marks, Acc. Chem. Res. 2011, 44, 501-510.
    [3] X. Guo, M. Baumgarten, K. Müllen, Prog. Polym. Sci. 2013, 38, 1832-1908.
    [4] X. Ma, R. Ansari, J. S. Kim, J. Kieffer, Phys. Chem. Chem. Phys. 2019, 21, 789-799.
    [5] A. N. Lakshminarayana, A. Onga, C. Y. Chi. J. Mater. Chem. C 2018, 6, 3551-3563.
    [6] W. P. Su, J. R. Schrieffer, A. J. Heeger, Phys. Rev. Lett. 1979, 42, 1689-1701.
    [7] M. Rehahn, Chem. Unserer Zeit 2003, 37, 18-30.
    [8] U. Salzner, J. B. Lagowski, P. G. Pickup, R. A. Poirier, Synth. Met. 1998, 96, 177- 189.
    [9] T. H. Le, Y. Y. Kim, H. S. Yoon, Polymers 2017, 9, 150.
    [10] A. Facchetti, Mater. Today 2007, 10, 28-37.
    [11] S. C. Rasmussen, R. L. Schwiderski , M. E. Mulholland, Chem. Commun. 2011, 47, 11394-11410.
    [12] J. Roncali, Chem. Rev. 1997, 97, 173-205.
    [13] J. Roncali, Macromol. Rapid. Commun. 2007, 28, 1761-1775.
    [14] C. L. Chochos, S. A. Choulis, Prog. Polym. Sci. 2001, 36, 1326-1414.
    [15] F. Wudl, M. Kobayashi, A. J. Heeger, J. Org. Chem.1984, 49, 3382-3384.
    [16] C. Kitamura, S. Tanaka, Y. Yamashita, Chem. Mater. 1996, 8, 570-578.
    [17] J. L. Bredas, J. Chem. Phys. 1985, 82, 3808-3811.
    [18] P. V. R. Schleyer, Chem. Rev. 2001, 101, 1115-1118.
    [19]Q. B. Pei, G. Zuccarello, M. Ahlskog, O. Inganäs, Polymer 1994, 35, 1347-1351.
    [20] Z. P. Fei, Y. Han, J. Martin, F. H. Scholes, M. Al-Hashimi, S. Y. AlQaradawi, N. Stingelin, T. D. Anthopoulos, M. Heeney, Macromolecules 2016, 49, 6384-6393.
    [21] C. L. Chochos, S. A. Choulis, Prog. Polym. Sci. 2011, 36, 1326-1414.
    [22] Z. G. Zhang, J. Z. Wang, J. Mater. Chem. 2012, 22, 4178-4187.
    [23] C. R. McNeill, J. J. M. Halls, R. Wilson, G. L. Whiting, S. Berkebile, M. G. Ramsey, R. H. Friend, N. C. Greenham, Adv. Funct. Mater. 2008, 18, 2309-2321.
    [24] C. J. Shi, Y. Yao,; Y. Yang, Q. B. Pei, J. Am. Chem. Soc. 2006, 114, 8980-8986.
    [25] J. H. Tsai, C. C. Chueh, M. H. Lai, C. F. Wang, W. C. Chen, B. T. Ko, C. Ting Macromolecules 2009, 42, 1897-1905.
    [26] N. Blouin, A. Michaud, D. Gendron, S. Wakim, E. Blair, R. N. Plesu, M. Belletete, G. Durocher, Y. Tao, M. Leclerc, J. Am. Chem. Soc. 2008, 130, 732-742.
    [27] E. Zhou, J. Z. Cong, M. X. Zhao, L. Z. Zhang, K. Hashimoto, K. Tajima, Chem. Commun. 2012, 48, 5283-5285.
    [28] M. Schubert, D. Dolfen, J. Frisch, S. Roland, R. Steyrleuthner, B. Stiller, Z. Chen, U. Scherf, N. Koch, A. Facchetti, D. Neher, Adv. Energy Mater. 2012, 2, 369-380.
    [29] N. Yamamoto, R. Ito, Y. Geerts, K. Nomura, Macromolecules 2009, 42, 5104-5111.
    [30] J. C. Speros, B. D. Paulsen, B. S. Slowinski, C. D. Frisbie, M. A. Hillmyer, ACS Macro. Lett. 2012, 1, 986-990.
    [31] G. Doyle, J. Catal., 1973, 30, 118-127.
    [32] Y. V. Korshak, M. A.Tlenkopatchev, B. A. Dolgoplosk, E. G. Avdeikina, D. F. Kutepov, J. Mol. Catal. 1982, 15, 207-218.
    [33] M. Lindmark-Hambergand, K. B. Wagener, Macromolecules 1987, 20, 2949-2951.
    [34] K. B. Wagener, J. M. Boncella , J. G. Nel, R. P. Duttweiler M. A. Hillmyer , Makromol. Chem. 1990, 191, 365-374.
    [35] Y. J. Chen, M. M. Abdellatif, K. Nomura, Tetrahedron 2018, 74, 619-643.
    [36] E. Thorn-Csanyi, P. Kraxner, Macromol. Rapid. Commun. 1995, 16, 147-153.
    [37] K. Nomura , H. Morimoto, Y. Imanishi , Z. Ramhani, Y. Geerts, J. Polym. Sci. Part A: Polym. Chem. 2001, 39, 2463-2470.
    [38] K. Nomura, Y. Miyamoto, H. Morimoto, Y. Geerts, J. Polym. Sci. Part A: Polym. Chem. 2005, 43, 6166-6177.
    [39] T. Haque, K. Nomura, Catalysts 2015, 5, 500-517.
    [40] H. Weychardt, H. Plenio, Organometallics 2008, 27, 1479-1485.
    [41] S. H. Joo, J. I. Jin, J. Polym. Sci. Part A: Polym. Chem. 2004, 42, 1335-1349.
    [42] G. W. Oakley, K. B. Wagener, Macromol. Chem. Phys. 2005, 206, 15-24.
    [43] J. Pecher, S. Mecking, Macromolecules 2007, 40, 7733-7755.
    [44] J. C. Speros, B. D. Paulsen, S. P. White,Y. F. Wu, E. A. Jackson, B. S. Slowinski, C. D. Frisbie, M. A. Hillmyer, Macromolecules 2012, 45, 2190-2199.
    [45] P. A. Delgado, D. Y. Liu, Z. Kean, K. B. Wagener, Macromolecules 2011, 44, 9529-9532.
    [46] K. B. Wagener, K. Brzezinska, J. Anderson, T. Younkin, K. Steppe, W. DeBoer, Macromolecules 1997, 30, 7363-7369.
    [47] S. Lehman, J. Schwendeman, P. O’Donnell, K. B. Wagener, Inorg. Chim. Acta. 2003, 345, 190-198.
    [48] M. Scholl, S. Ding, C. W. Lee, R. H. Grubbs, Org. Lett. 1999, 1, 953-956.
    [49] S. B. Garber, J. S. Kingsbury, B. L. Gray, A. H. Hoveyda, J. Am. Chem. Soc. 2000, 122, 8168-8179.
    [50] S. Gunes, H. Neugebauer, N. S. Sariciftci, Chem. Rev. 2007, 107, 1324-1338.
    [51] L. M. Chen, Z. Hong, G. Li, Y. Yang, Adv. Mater. 2009, 21, 1434-1449.
    [52] L. Lu, Chem. Rev. 2015, 115, 12666-12731.
    [53] G. Li, W. H. Chang, Y. Yang, Nat. Rev. Mater. 2017, 2, 17043.
    [54] T. Xu, L. P. Yu, Mater. Today 2014, 17, 11-15.
    [55] Y. J. Cheng, S. H. Yang, C. S. Hsu, Chem. Rev. 2009, 109, 5868-5923.
    [56] Z. H. Zhou, T. Maruyama, T. Kanbara, T. Ikeda, K. Ichimura, T. Yamamoto, K.Tokuda, J. Chem. Soc. Chem. Commun. 1991, 1210-1212.
    [57] E. E. Havinga1, W. ten Hoeve, H. Wynberg, Synth. Met. 1993, 55, 299.
    [58] E. E. Havinga, W. ten Hoeve, H. Wynberg, Polym. Bull. 1992, 29, 119-126.
    [59] L. T. Dou, J. B. You, Z. Hong , Z. Xu, G. Li, R. A. Street, Y. Yang, Adv. Mater. 2013, 25, 6642-6671.
    [60] L. Dou, Y. S. Liu, Z. Hong, G. Li, Y. Yang. Chem. Rev. 2015, 115, 12633-12665.
    [61] W. Tang, Y. K. Huang, L. Han, R. L. Liu,Y., Z. Su, X. J. Guo F. Yan, J. Mater. Chem. C 2019, 7, 790-808.
    [62] C. R. Newman, C. D. Frisbie, D. A. da Silva Filho, J. L. Bre´das, P. C. Ewbank,
    K. R. Mann, Chem. Mater. 2004, 16, 4436-4451.
    [63] H. Klauk, Organic electronics II: More materials and applications, Wiley-VCH, 2012.
    [64] H. C.Avila, P. Serrano, A. R. J. Barreto, Z. Ahmed, C. de P. Gouvêa C. Vilani, R. B. Capaz, C. F. N. Marchiori, M. Cremona, Org. Electron. 2018, 58, 33-37.
    [65] G. Wang, J. Swensen, D. Moses, A. J. Heeger, J. Appl. Phys. 2003, 93, 6137-6141.
    [66] R. J. Kline, M. D. McGehee, E. N. Kadnikova, J. Liu, J. M. Fréchet, Adv. Mater. 2003, 15, 1519-1522.
    [67] R. J. Kline, M. D. McGehee, E. N. Kadnikova, J. Liu, J. M. J. Fréchet, M. F. Toney, Macromolecules 2005, 38, 3312-3319.
    [68] A. Zen, J. Pflaum, S. Hirschmann, W. Zhuang, F. Jaiser, U. Asawapirom, J. P. Rabe, U. Scherf, D. Neher, Adv. Funct. Mater. 2004, 14, 757-764.
    [69] L. L. Chua, J. Zaumseil, J. F. Chang, E. C. W. Ou, P. K. H. Ho, H. Sirringhaus, R. H. Friend, Nature 2005, 434, 194-199.
    [70] H. Pan, Y. Li, Y. Wu, P. Liu, B. S. Ong, S. Zhu, G. Xu, J. Am. Chem. Soc. 2007, 129, 4112-4113.
    [71] I. McCulloch, M. Heeney, C. Bailey, K. Genevicius, I. MacDonald, M. Shkunov, D. Sparrowe, S. Tierney, R. Wagner,W. Zhang, M. L. Chabinyc, R. J. Kline, M. D. McGehee, M. F. Toney, Nat. Mater. 2006, 5, 328-333.
    [72] M. Zhang, H. N. Tsao, W. Pisula, C. Yang, A. K. Mishra, K. Müllen, J. Am. Chem. Soc. 2007, 129, 3472-3473.
    [73] J. Liu, R. Zhang, G. Sauvé, T. Kowalewski, R. D. McCullough, J. Am. Chem. Soc. 2008, 130, 13167-13176.
    [74] J. Veres, S. Ogier, G. Lloyd, D. de Leeuw, Chem. Mater. 2004, 16, 4543-4555.
    [75] D. Zielke, A. C. Hübler, U. Hahn, N. Brandt, M. Bartzsch, U. Fügmann, T. Fischer, J. Veres, S. Ogier, Appl. Phys. Lett. 2005, 87, 123508.
    [76] H. Sirringhaus, T. Kawase, R. H. Friend, T. Shimoda, M. Inbasekaran, W. Wu, E. P. Woo, Science 2000, 290, 2123-2126.
    [77] D. M. de Leeuw, M. M. J Simenon, A. R. Brown, R. E. F. Einerhand, Synth. Met. 1997, 87, 53-59.
    [78] M. H. Yoon, C. Kim, A. Facchetti, T. J. Marks, J. Am. Chem. Soc. 2006, 128, 12851-12869.
    [79] J. A. Letizia, M. R. Salata, C. M. Tribout, A. Facchetti, M. A. Ratner, T. J. Marks, J. Am. Chem. Soc. 2008, 130, 9679-9694.
    [80] X. Zhan, Z. Tan, B. Domercq, Z. An, X. Zhang, S. Barlow, Y. Li, D. Zhu, B. Kippelen, S. R. Marder, J. Am. Chem. Soc. 2007, 129, 7246-7247.
    [81] A. Babel, S. A. Jenekhe, J. Am. Chem. Soc. 2003, 125, 13656-13657.
    [82] H. Yan, Z. Chen, Y. Zheng, C. Newman, J. R. Quinn, F. Dötz, M. Kastler, A. Facchetti, Nature 2009, 457, 679-686.

    無法下載圖示 全文公開日期 2024/07/31 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE