簡易檢索 / 詳目顯示

研究生: 謝孟霖
Meng-Lin Hsieh
論文名稱: WS2無機奈米管合成與其電性的研究
The study of WS2 inorganic nanotubes synthesis and its electrical properties
指導教授: 黃崧任
Song-Jeng Huang
口試委員: 王金燦
Chin-Tsan Wang
顏毅廣
Yi-Kuang Yen
江偉宏
Wei-Hung Chiang
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2017
畢業學年度: 105
語文別: 中文
論文頁數: 93
中文關鍵詞: WS2無機奈米管場效電晶體
外文關鍵詞: WS2 inorganic nanotube, field effect transistor
相關次數: 點閱:206下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本研究中,使用流化床反應器設備來製備出WS2無機奈米管。利用化學氣相沉積法來合成WS2奈米管會受到很多因素影響,包含了不同的H2S流速、不同的反應溫度,以及添加石英載台來改善反應爐內部流場,使氣流在反應區域內方向一致、並增加反應區內流速,進而提高驅動力以利於奈米管的合成,並利用TEM進行WS2奈米管的分析。
利用微影製程製作出場效電晶體元件,使用WS2奈米管作為電晶體之通道且藉由光學顯微鏡進行圖形檢測,WS2奈米管場效電晶體元件展現出p-type的半導體特性,藉由快速熱退火處理,WS2奈米管場效電晶體元件的電性特性顯著提升。


This study used the fluidized bed reactor to prepare WS2 inorganic nanotube. Synthesize WS2 nanotubes with chemical vapor deposition method to may affect by many factors, including different H2S flow rate, different reaction temperature, and the use of quartz holder to improve the reactor flow field. The air flow in the same direction within the reaction zone, increasing the flow rate in reaction zone, then improve the driving force to facilitate the synthesis of nanotubes, and use TEM to analysis WS2 nanotubes.
This study used lithography method to produce the field effect transistor device, placing the nanotubes onto the transistor channel and check its pattern by optical microscope. WS2 nanotube field effect transistor device shows p-type semiconductor property. Through the rapid thermal annealing treatment, WS2 nanotube field effect transistor device shows significant increase in electrical characteristic.

目錄 摘要………………………………………………………………………I Abstract…………………………………………………………………II 致謝……………………………………………………………………III 目錄……………………………………………………………………IV 圖目錄………………………………………………………………VIII 表目錄…………………………………………………………………XII 第一章 緒論 1 1.1 前言 1 1.2 文獻回顧 2 1.2.1 WS2奈米管合成方式 2 1.2.2 WS2奈米管和場效電晶體之應用 9 1.2.3 MoS2和場效電晶體之應用 11 1.2.4 影響場效電晶體之特性 13 1.3 文獻整理心得 16 1.4 研究動機與目的 17 第二章 無機奈米材料及場效電晶體之相關性質 19 2.1 無機奈米材料介紹 19 2.1.1 WS2無機奈米管之特性 20 2.1.2 WS2無機奈米管合成方式 22 2.2 半導體相關知識 22 2.2.1 能帶 22 2.2.2 摻雜 24 2.3 金氧半導體場效應電晶體 25 2.3.1 MOSFET電晶體種類 26 2.3.2 MOSFET電晶體操作原理 29 2.4 不同結構電晶體之操作原理與特性 30 2.4.1 背閘極式電晶體 30 2.4.2 上閘極式電晶體 31 2.4.3 雙閘極式電晶體 31 2.5 快速熱退火原理 32 2.6 各項重要參數 34 2.6.1 載子遷移率 34 2.6.2 閥值電壓 35 2.6.3 電流開關比 35 2.6.4 接觸電阻 36 第三章 實驗方法與步驟 37 3.1 實驗流程 37 3.2 元件製程 40 3.2.1 設計光罩圖形 40 3.2.2 矽基底參數 41 3.2.3 沉積電極 41 3.2.4 曝光顯影製程 41 3.3 實驗材料 44 3.4 實驗設備 45 3.4.1 流化床反應爐 45 3.4.2 加溫區域 46 3.4.3 排氣過濾單元 47 3.4.4 流速控制單元 48 3.4.5 樣品收集設備 49 3.5 觀察及電性量測設備介紹 50 3.5.1 掃描式電子顯微鏡 50 3.5.2 X光繞射分析儀 51 3.5.3 穿透式電子顯微鏡 52 3.5.4 四點探針系統 53 3.5.5 快速退火處理系統 54 3.5.6 光學顯微鏡 55 3.6 WS2無機奈米管合成製備步驟 56 3.6.1 次氧化鎢 (WO3-x) 合成步驟 56 3.6.2 WS2奈米管合成步驟 57 第四章 結果與討論 58 4.1 利用CAD CAE軟體對反應爐進行設計與模擬 58 4.1 WS2奈米管合成之成果 60 4.1.1 次氧化鎢製備 60 4.1.2 WS2奈米管合成參數 62 4.1.3 WS2奈米管合成總結 63 4.2 WS2奈米管元件之電性分析 71 4.2.1 電性分析 75 4.2.2 快速熱退火處理之影響 82 4.2.3 文獻比較表 85 第五章 結論 86 第六章 未來展望 88 6.1 WS2奈米管 88 6.2 WS2奈米管應用於電晶體 88 參考文獻………………………………………………………………89

[1] R. Tenne, L. Margulis, M. Genut and G. Hodes, “Polyhedral and cylindrical structures of tungsten disulphide”, Nature, Vol. 360, 444-446, 1992
[2] A. Zak, L. Sallacan-Ecker, A. Margolin, Y. Feldman, R. Popovitz-Biro, A. Albu-Yaron, M. Genut, and R. Tenne, “Scaling Up of the WS2 Nanotubes Synthesis”, Fullerenes, Nanotubes and Carbon Nanostructures, Vol. 19, 18-26, 2010
[3] A. Rothschild, J. Sloan and R. Tenne, “Growth of WS2 Nanotubes Phases”, Journal of the American Chemical Society, Vol. 122, 5169-5179, 2000
[4] Y. Q. Zhu, W. K. Hsu, N. Grobert, B. H. Chang, M. Terrones, H. Terrones, H. W. Kroto, and D.R.M. Walton, “Production of WS2 Nanotubes”, Chemistry of Materials, Vol. 12, 1190-1194, 2000
[5] R. Levi, O. Bitton, G. Leitus, R. Tenne, E. Joselevich, “Field-Effect Transistors Based on WS2 Nanotubes with High Current-Carrying Capacity”, Nano Letters, Vol. 13, 3736-3741, 2013
[6] M. Sugahara, H. Kawai, Y. Yomogida, Y. Maniwa, S. Okada, and K. Yanagi, “Ambipolar transistors based on random networks of WS2 nanotubes”, Applied Physics Express, Vol. 9, 075001, 2016
[7] M. Strojnik, A. Kovic, A. Mrzel, J. Buh, J. Strle and D. Mihailovic, “MoS2 nanotube field effect transistors”, AIP Advances, Vol. 4, 097114, 2014

[8] B. Radisavljevic, A. Radenovic, J. Brivio, V. Giacometti, A. Kis, “Single-layer MoS2 transistors”, Nature Nanotechnology, Vol. 6, 147-150, 2011
[9] W. I. Park, J. S. Kim, G. C. Yi, M. H. Bae and H. J. Lee, “Fabrication and electrical characteristics of high-performance ZnO nanorod field-effect transistors”, Applied Physics Letters, Vol. 85, 5052-5054, 2004
[10] 焦彥棠,奈米碳材料之光電特性分析,碩士論文,大同大學光電工程學系研究所,2010年
[11] M. H. Yang, K. B. K. Teo, W. I. Milne, D. G. Hasko, “Carbon nanotube Schottky diode and directionally dependent field-effect transistor using asymmetrical contacts”, Applied Physics Letters, Vol. 87, 253116, 2005
[12] H. S. P. Wong, “Field effect transistors-from silicon MOSFETs to carbon nanotube FETs”, In 23th International Conference on Microelectronics, Vol. 1, 103-107, 2002.
[13] K. S. Novoselov, D. Jiang, F. Schedin, T. J. Booth, V. V. Khotkevich, S. V. Morozov, “Two-dimensional atomic crystals”, Proceedings of the National Academy of Sciences of the United States of America, Vol. 102, 10451-10453, 2005
[14] S. Z. Butler, S. M. Hollen, L. Cao, Y. Cui, J. A. Gupta, H. R. Gutierrez, “Progress, Challenges, and Opportunities in Two-Dimensional Materials Beyond Graphene”, ACS Nano, Vol. 7, 2898-2926, 2013

[15] Q. Wang, K. K. Zadeh, A. Kis, J. Coleman, and M. Strano, “Electronics and Optoelectronics of two-Dimensional Transition Metal Dichalcogenides”, Nature Nanotechnology, Vol. 7, 699-712, 2012
[16] H. R. Gutierrez et al., “Extraordinary roomtemperature photoluminescence in triangular WS2 monolayers”, Nano Letters, Vol. 13, 3447-3454, 2013
[17] M. W. Iqbal et al., “High-mobility and air-stable single-layer WS2 field-effect transistors sandwiched between chemical vapor deposition-grown hexagonal BN films”, Scientific Reports, Vol. 5, 10699, 2015
[18] 黃政揚,WS2無機奈米管對鎂合金複合材料的機械性質與微觀組織影響之研究,碩士論文,國立台灣科技大學機械工程學系研究所, 2015年
[19] 李勝偉,光電半導體元件,五南圖書出版股份有限公司,2014年
[20] 張嘉文,奈米碳管電晶體之高頻特性研究,碩士論文,國立交通大學電子工程學系研究所,2008年
[21] K. Dawon, “Electric field controlled semiconductor device”, U.S. Patent No. 3102230, 1963
[22] 葉文冠,翁俊仁,半導體製程技術與元件設計,台灣東華書局股份有限公司, 2008年

[23] Y. M. Lin, J. Appenzeller, P. Avouris, “Ambipolar-to-Unipolar Conversion of Carbon Nanotube Transistors by Gate Structure Engineering”, Nano Letters, Vol. 4, 947-950, 2004
[24] R. T. Weitz, U. Zschieschang, F. Effenberger, H. Klauk, M. Burghard, and K. Kern, “High-Performance Carbon Nanotube Field Effect Transistors with a Thin Gate Dielectric Based on a Self-Assembled Monolayer”, Nano Letters, Vol. 7, 22-27, 2007
[25] A. Javey et al., “Carbon Nanotube Field-Effect Transistors with Integrated Ohmic Contacts and High-k Gate Dielectrics”, Nano Letters, Vol. 4, 447-450, 2004
[26] J. Appenzeller et al., “Comparing carbon nanotube transistors-the ideal choice: a novel tunneling device design”, IEEE Transactions on Electron Devices, Vol. 52, 2568-2576, 2005
[27] Y. M. Lin et al., “High-performance dual-gate carbon nanotube FETs with 40-nm gate length”, IEEE Electron Device Letters, Vol. 26, 823-825, 2005
[28] J. Appenzeller, Y. M. Lin, J. Knoch, and P. Avouris, “Band-to-Band Tunneling in Carbon Nanotube Field-Effect Transistors”, Physical Review Letters, Vol. 93, 196805, 2004
[29] 李玫瑾、陳奕翔、高慶伊、劉子豪,薄膜沉積特性提升,專題製作計畫書,義守大學電子工程學系,2015年
[30] 曹嘉為,WS2無機奈米管的製造與其生醫應用,碩士論文,國立台灣科技大學機械工程學系研究所,2016年

[31] 林永昇,高效能透明有機薄膜電晶體,碩士論文,國立交通大學光電工程學系研究所,2006年
[32] P. V. Necliudov, M. S. Shur, D. J. Gundlach, and T. N. Jackson, “Contact resistance extraction in pentacene thin film transistors”, Solid-State Electronics on ScienceDirect, Vol. 47, 259-262, 2003
[33] Y. Q. Zhu, W. K. Hsu, H. Terrones, N. Grobert, B. H. Chang, M. Terrones, B. Q. Wei, H. W. Kroto, D. R. M. Walton, C. B. Boothroyd, I. Kinloch, G. Z. Chen, A. H. Windled and D. J. Frayd, “Morphology, structure and growth of WS2 nanotubes”, Journal of Materials Chemistry, Vol. 10, 2570-2577, 2000
[34] G. Seifert, H. Terrones, M. Terrones, G. Jungnickel, T. Frauenheim, “On the electronic structure of WS2 nanotubes”, Solid-State Communciations on ScienceDirect, Vol. 114, 245-248, 2000
[35] Materials Project, https://www.materialsproject.org/

QR CODE