簡易檢索 / 詳目顯示

研究生: 陳儀庭
Yi-Ting Chen
論文名稱: 廣義分頻多工系統之自干擾消除技術之研究
Research on Self-Interference Cancellation Techniques of Generalized Frequency Division Multiplexing Systems
指導教授: 張立中
Li-Chung Chang
口試委員: 劉馨勤
Hsin-Chin Liu
曾德峰
Der-Feng Tseng
曾恕銘
Shu-Ming Tseng
陳永芳
Yung-Fang Chen
學位類別: 碩士
Master
系所名稱: 電資學院 - 電機工程系
Department of Electrical Engineering
論文出版年: 2021
畢業學年度: 109
語文別: 中文
論文頁數: 82
中文關鍵詞: 廣義分頻多工自干擾峰均值功率比頻外溢出複雜度空時編碼
外文關鍵詞: GFDM, Self-Interference, PAPR, OOB, Complexity, STBC
相關次數: 點閱:455下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   在第四代行動通訊(the 4th Generation of mobile communication system, 4G)中,通訊標準以正交分頻多工技術(Orthogonal Frequency Division Multiplexing, OFDM)為主,其優點有:有效對抗頻率選擇性衰減、抗碼間干擾能力強、實現簡單等,而缺點為高頻外(out-of-band, OOB)溢出。
      隨著物聯網的興起,第五代行動通訊(the 5th Generation of mobile communication system, 5G)的目標是:高資料傳輸速率、低延遲、高頻譜效率和大規模裝置連接。然而,廣義分頻多工(Generalized Frequency Division Multiplexing, GFDM)是一種很有前途的多載波方案,它有著低頻外溢出的特性,可以靈活處理第五代行動通訊的各種不同應用場景。
      但是,由於廣義分頻多工系統中所應用的濾波器會產生自干擾,包含子符元間干擾(Inter-symbol Interference, ISI)和子載波間干擾(Inter-Carrier-Interference, ICI),使位元錯誤率(Bit error rate, BER)相較正交分頻多工技術來的差。
    在本篇論文中,我們將各種不同的預處理及後處理添加到傳統GFDM架構中,消除了自干擾的影響,進而討論GFDM對於不同改良方法的BER、峰均值功率比(Peak-to-Average Power Ratio, PAPR)、功率頻譜密度(power spectral density, PSD),以及複雜度。
    BER效能模擬將會在GFDM系統之不同濾波器滾降係數和不同通道模型的環境下進行,分析每一種方法在不同的情況下會有什麼影響。


    In the 4th Generation of mobile communication system (4G), the communication standard is based on Orthogonal Frequency Division Multiplexing (OFDM), which has the following advantages: effective against frequency selectivity attenuation, strong ability to resist inter-symbol interference, simple implementation, etc., but the disadvantage is high out-of-band (OOB) leakage.
    With the rise of the Internet of Things, the goals of the 5th Generation of mobile communication system (5G) are: high data transmission rate, low latency, high spectral efficiency, and large-scale device connections. However, Generalized Frequency Division Multiplexing (GFDM) is a promising multi-carrier scheme. It has the characteristics of low OOB leakage and can flexibly handle various scenarios of the 5th Generation of mobile communication system (5G).
    In this paper, we add a variety of pre-processing and post-processing to the original GFDM architecture to eliminate the influence of self-interference and then discuss the bit error rate (BER), peak-to-average power ratio (PAPR), power spectral density (PSD), and complexity of GFDM for different improved methods.
    The BER performance simulation will be performed in different roll-off factors of filter and different channel models to analyze the impact of each method under different situations.

    摘要 I ABSTRACT II 誌謝 III 目錄 IV 圖目錄 VII 表目錄 X 第1章 序論 1 1.1 研究動機與目的 1 1.2 論文貢獻 2 1.3 章節概要 2 第2章 文獻回顧與系統架構介紹 3 2.1 廣義分頻多工系統 3 2.1.1 傳送端架構 3 2.1.2 濾波器 11 2.1.3 通道模型 12 2.1.4 接收端架構 13 2.2 預編碼介紹 19 2.2.1 Zero Forcing Precoding 19 2.2.2 Inverse Precoding 19 2.2.3 QR decomposition 19 2.2.4 LU decomposition 20 2.2.5 Cholesky decomposition 20 2.2.6 Hadamard Transform 20 第3章 提出的系統架構與複雜度 21 3.1 自干擾消除之廣義分頻多工系統 21 3.1.1 ZF Precoding GFDM 21 3.1.2 Inverse Precoding GFDM 22 3.1.3 QR decomposition GFDM 23 3.1.4 LU decomposition GFDM 24 3.1.5 Cholesky decomposition GFDM 25 3.2 複雜度 27 3.3 時間反轉空時區塊碼廣義分頻多工系統 29 3.3.1 2x2 TR-STBC-GFDM with HDT傳送端架構 29 3.3.2 2x2 TR-STBC-GFDM with HDT接收端架構 30 3.3.3 4x4 TR-STBC-GFDM with HDT傳送端架構 33 3.3.4 4x4 TR-STBC-GFDM with HDT接收端架構 35 第4章 模擬結果與討論 42 4.1 廣義分頻多工系統之效能分析 42 4.1.1 不同架構在不同通道下的BER效能 43 4.1.2 不同架構之PAPR效能 53 4.1.3 不同架構之PSD效能 54 4.2 MIMO TR-STBC-GFDM系統之效能分析 55 4.2.1 2x2 TR-STBC-GFDM 之BER效能 56 4.2.2 2x2 TR-STBC-GFDM with HDT 之BER效能 60 4.2.3 2x2 TR-STBC不同架構之PAPR效能 64 4.2.4 2x2 TR-STBC不同架構之PSD效能 65 4.2.5 4x4 TR-STBC-GFDM 之BER效能 66 4.2.6 4x4 TR-STBC-GFDM with HDT 之BER效能 70 4.2.7 4x4 TR-STBC不同架構之PAPR效能 73 4.2.8 4x4 TR-STBC不同架構之PSD效能 75 第5章 結論與未來研究方向 77 附錄A 78 附錄B 79 附錄C 80 參考文獻 81

    [1] F. Li, L. Zhao, K. Zheng and J. Wang, "A Interference-Free Transmission Scheme for GFDM System," 2016 IEEE Globecom Workshops (GC Wkshps), 2016, pp. 1-6, doi: 10.1109/GLOCOMW.2016.7848815.
    [2] F. Li, K. Zheng, L. Zhao, H. Zhao and Y. Li, "Design and Performance of a Novel Interference-Free GFDM Transceiver With Dual Filter," in IEEE Transactions on Vehicular Technology, vol. 68, no. 5, pp. 4695-4706, May 2019, doi: 10.1109/TVT.2019.2902561.
    [3] F. Li, K. Zheng, H. Long and D. Guan, "Performance Analysis of Complementary GFDM in IoT Communications," 2019 IEEE 89th Vehicular Technology Conference (VTC2019-Spring), 2019, pp. 1-5, doi: 10.1109/VTCSpring.2019.8746646.
    [4] J. Jeong, Y. Park, S. Weon, J. Kim, S. Choi and D. Hong, "Eigendecomposition-Based GFDM for Interference-Free Data Transmission and Pilot Insertion for Channel Estimation," in IEEE Transactions on Wireless Communications, vol. 17, no. 10, pp. 6931-6943, Oct. 2018, doi: 10.1109/TWC.2018.2864995.
    [5] N. Michailow et al., "Generalized Frequency Division Multiplexing for 5th Generation Cellular Networks," IEEE Transactions on Communications, vol. 62, no. 9, pp. 3045-3061, 2014.
    [6] H. Nam, M. Choi, C. Kim, D. Hong and S. Choi, "A new filter-bank multicarrier system for QAM signal transmission and reception," 2014 IEEE International Conference on Communications (ICC), 2014, pp. 5227-5232, doi: 10.1109/ICC.2014.6884151.
    [7] LTE; Evolved Universal Terrestrial Radio Access (E-UTRA); Relay radio transmission and reception, document TS 36.116. v11.4.0, 3GPP, 2015.
    [8] T. Xu, C. Masouros and I. Darwazeh, "Waveform and Space Precoding for Next Generation Downlink Narrowband IoT," in IEEE Internet of Things Journal, vol. 6, no. 3, pp. 5097-5107, June 2019, doi: 10.1109/JIOT.2019.2896724.
    [9] Golub, G. H. and Van Loan, C. F. Positive Definite Systems. §4.2 in Matrix Computations, 4rd ed. Baltimore, MD Johns Hopkins University Press, 2013.
    [10] J. Seberry and M. Yamada, "Hadamard matrices sequences and block designs" in Contemporary Design Theory: A Collection of Surveys, Chichester, UK:John Wiley and Sons, pp. 431-560, 1992.
    [11] A. Hedayat and W. D. Wallis, "Hadamard matrices and their applications", Annals of Statistics, vol. 6, no. 6, pp. 1184-1238, 1978.
    [12] Thomhert Suprapto Siadari and Soo Young Shin, "Joint Hadamard transform and Alamouti scheme for wireless communication system", International Journal of Electronics and Communications (AEU), vol. 68, no. 9, pp. 889-891, September 2014.
    [13] A. RezazadehReyhani, A. Farhang, and B. Farhang-Boroujeny, “Circularly pulse-shaped waveforms for 5G: options and comparisons,” in Proc. IEEE GLOBECOM, San Diego, CA, 2015, pp. 1-7.
    [14] S. Yiu, D. Calin, O. Kaya and K. Yang, "Distributed STBC-OFDM and distributed SFBC-OFDM for frequency-selective and time-varying channels," 2012 IEEE Wireless Communications and Networking Conference (WCNC), Paris, France, 2012, pp. 251-255, doi: 10.1109/WCNC.2012.6214222.
    [15] S. A. Cheema, K. Naskovska, M. Attar, B. Zafar and M. Haardt, "Performance Comparison of Space Time Block Codes for Different 5G Air Interface Proposals," WSA 2016; 20th International ITG Workshop on Smart Antennas, 2016, pp. 1-7.
    [16] T. Y. Elganimi and M. B. Elkhoja, "Improved Orthogonal Space-Time Block Codes with Multiple Transmit Antennas Using Hadamard Transform," 2019 6th International Conference on Electrical and Electronics Engineering (ICEEE), 2019, pp. 167-172, doi: 10.1109/ICEEE2019.2019.00040.
    [17] S. M. Alamouti, "A simple transmit diversity technique for wireless communications," IEEE Journal on Selected Areas in Communications, vol. 16, no. 8, pp. 1451-1458, 1998.
    [18] Vahid Tarokh; Hamid Jafarkhani & A. Robert Calderbank (March 1999). "Space–time block coding for wireless communications: performance results" (PDF). IEEE Journal on Selected Areas in Communications. 17 (3): 451–460. doi:10.1109/49.753730. Archived from the original (PDF) on 2009-12-29.
    [19] N. Fatema, G. Hua, Y. Xiang, D. Peng and I. Natgunanathan, "Massive MIMO Linear Precoding: A Survey," in IEEE Systems Journal, vol. 12, no. 4, pp. 3920-3931, Dec. 2018, doi: 10.1109/JSYST.2017.2776401.
    [20] M. Vu and A. Paulraj, "MIMO Wireless Linear Precoding," in IEEE Signal Processing Magazine, vol. 24, no. 5, pp. 86-105, Sept. 2007, doi: 10.1109/MSP.2007.904811.
    [21] C. Mollén, U. Gustavsson, T. Eriksson and E. G. Larsson, "Out-of-band radiation measure for MIMO arrays with beamformed transmission," 2016 IEEE International Conference on Communications (ICC), 2016, pp. 1-6, doi: 10.1109/ICC.2016.7511629.

    無法下載圖示 全文公開日期 2024/09/14 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE