研究生: |
陳儀庭 Yi-Ting Chen |
---|---|
論文名稱: |
廣義分頻多工系統之自干擾消除技術之研究 Research on Self-Interference Cancellation Techniques of Generalized Frequency Division Multiplexing Systems |
指導教授: |
張立中
Li-Chung Chang |
口試委員: |
劉馨勤
Hsin-Chin Liu 曾德峰 Der-Feng Tseng 曾恕銘 Shu-Ming Tseng 陳永芳 Yung-Fang Chen |
學位類別: |
碩士 Master |
系所名稱: |
電資學院 - 電機工程系 Department of Electrical Engineering |
論文出版年: | 2021 |
畢業學年度: | 109 |
語文別: | 中文 |
論文頁數: | 82 |
中文關鍵詞: | 廣義分頻多工 、自干擾 、峰均值功率比 、頻外溢出 、複雜度 、空時編碼 |
外文關鍵詞: | GFDM, Self-Interference, PAPR, OOB, Complexity, STBC |
相關次數: | 點閱:455 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在第四代行動通訊(the 4th Generation of mobile communication system, 4G)中,通訊標準以正交分頻多工技術(Orthogonal Frequency Division Multiplexing, OFDM)為主,其優點有:有效對抗頻率選擇性衰減、抗碼間干擾能力強、實現簡單等,而缺點為高頻外(out-of-band, OOB)溢出。
隨著物聯網的興起,第五代行動通訊(the 5th Generation of mobile communication system, 5G)的目標是:高資料傳輸速率、低延遲、高頻譜效率和大規模裝置連接。然而,廣義分頻多工(Generalized Frequency Division Multiplexing, GFDM)是一種很有前途的多載波方案,它有著低頻外溢出的特性,可以靈活處理第五代行動通訊的各種不同應用場景。
但是,由於廣義分頻多工系統中所應用的濾波器會產生自干擾,包含子符元間干擾(Inter-symbol Interference, ISI)和子載波間干擾(Inter-Carrier-Interference, ICI),使位元錯誤率(Bit error rate, BER)相較正交分頻多工技術來的差。
在本篇論文中,我們將各種不同的預處理及後處理添加到傳統GFDM架構中,消除了自干擾的影響,進而討論GFDM對於不同改良方法的BER、峰均值功率比(Peak-to-Average Power Ratio, PAPR)、功率頻譜密度(power spectral density, PSD),以及複雜度。
BER效能模擬將會在GFDM系統之不同濾波器滾降係數和不同通道模型的環境下進行,分析每一種方法在不同的情況下會有什麼影響。
In the 4th Generation of mobile communication system (4G), the communication standard is based on Orthogonal Frequency Division Multiplexing (OFDM), which has the following advantages: effective against frequency selectivity attenuation, strong ability to resist inter-symbol interference, simple implementation, etc., but the disadvantage is high out-of-band (OOB) leakage.
With the rise of the Internet of Things, the goals of the 5th Generation of mobile communication system (5G) are: high data transmission rate, low latency, high spectral efficiency, and large-scale device connections. However, Generalized Frequency Division Multiplexing (GFDM) is a promising multi-carrier scheme. It has the characteristics of low OOB leakage and can flexibly handle various scenarios of the 5th Generation of mobile communication system (5G).
In this paper, we add a variety of pre-processing and post-processing to the original GFDM architecture to eliminate the influence of self-interference and then discuss the bit error rate (BER), peak-to-average power ratio (PAPR), power spectral density (PSD), and complexity of GFDM for different improved methods.
The BER performance simulation will be performed in different roll-off factors of filter and different channel models to analyze the impact of each method under different situations.
[1] F. Li, L. Zhao, K. Zheng and J. Wang, "A Interference-Free Transmission Scheme for GFDM System," 2016 IEEE Globecom Workshops (GC Wkshps), 2016, pp. 1-6, doi: 10.1109/GLOCOMW.2016.7848815.
[2] F. Li, K. Zheng, L. Zhao, H. Zhao and Y. Li, "Design and Performance of a Novel Interference-Free GFDM Transceiver With Dual Filter," in IEEE Transactions on Vehicular Technology, vol. 68, no. 5, pp. 4695-4706, May 2019, doi: 10.1109/TVT.2019.2902561.
[3] F. Li, K. Zheng, H. Long and D. Guan, "Performance Analysis of Complementary GFDM in IoT Communications," 2019 IEEE 89th Vehicular Technology Conference (VTC2019-Spring), 2019, pp. 1-5, doi: 10.1109/VTCSpring.2019.8746646.
[4] J. Jeong, Y. Park, S. Weon, J. Kim, S. Choi and D. Hong, "Eigendecomposition-Based GFDM for Interference-Free Data Transmission and Pilot Insertion for Channel Estimation," in IEEE Transactions on Wireless Communications, vol. 17, no. 10, pp. 6931-6943, Oct. 2018, doi: 10.1109/TWC.2018.2864995.
[5] N. Michailow et al., "Generalized Frequency Division Multiplexing for 5th Generation Cellular Networks," IEEE Transactions on Communications, vol. 62, no. 9, pp. 3045-3061, 2014.
[6] H. Nam, M. Choi, C. Kim, D. Hong and S. Choi, "A new filter-bank multicarrier system for QAM signal transmission and reception," 2014 IEEE International Conference on Communications (ICC), 2014, pp. 5227-5232, doi: 10.1109/ICC.2014.6884151.
[7] LTE; Evolved Universal Terrestrial Radio Access (E-UTRA); Relay radio transmission and reception, document TS 36.116. v11.4.0, 3GPP, 2015.
[8] T. Xu, C. Masouros and I. Darwazeh, "Waveform and Space Precoding for Next Generation Downlink Narrowband IoT," in IEEE Internet of Things Journal, vol. 6, no. 3, pp. 5097-5107, June 2019, doi: 10.1109/JIOT.2019.2896724.
[9] Golub, G. H. and Van Loan, C. F. Positive Definite Systems. §4.2 in Matrix Computations, 4rd ed. Baltimore, MD Johns Hopkins University Press, 2013.
[10] J. Seberry and M. Yamada, "Hadamard matrices sequences and block designs" in Contemporary Design Theory: A Collection of Surveys, Chichester, UK:John Wiley and Sons, pp. 431-560, 1992.
[11] A. Hedayat and W. D. Wallis, "Hadamard matrices and their applications", Annals of Statistics, vol. 6, no. 6, pp. 1184-1238, 1978.
[12] Thomhert Suprapto Siadari and Soo Young Shin, "Joint Hadamard transform and Alamouti scheme for wireless communication system", International Journal of Electronics and Communications (AEU), vol. 68, no. 9, pp. 889-891, September 2014.
[13] A. RezazadehReyhani, A. Farhang, and B. Farhang-Boroujeny, “Circularly pulse-shaped waveforms for 5G: options and comparisons,” in Proc. IEEE GLOBECOM, San Diego, CA, 2015, pp. 1-7.
[14] S. Yiu, D. Calin, O. Kaya and K. Yang, "Distributed STBC-OFDM and distributed SFBC-OFDM for frequency-selective and time-varying channels," 2012 IEEE Wireless Communications and Networking Conference (WCNC), Paris, France, 2012, pp. 251-255, doi: 10.1109/WCNC.2012.6214222.
[15] S. A. Cheema, K. Naskovska, M. Attar, B. Zafar and M. Haardt, "Performance Comparison of Space Time Block Codes for Different 5G Air Interface Proposals," WSA 2016; 20th International ITG Workshop on Smart Antennas, 2016, pp. 1-7.
[16] T. Y. Elganimi and M. B. Elkhoja, "Improved Orthogonal Space-Time Block Codes with Multiple Transmit Antennas Using Hadamard Transform," 2019 6th International Conference on Electrical and Electronics Engineering (ICEEE), 2019, pp. 167-172, doi: 10.1109/ICEEE2019.2019.00040.
[17] S. M. Alamouti, "A simple transmit diversity technique for wireless communications," IEEE Journal on Selected Areas in Communications, vol. 16, no. 8, pp. 1451-1458, 1998.
[18] Vahid Tarokh; Hamid Jafarkhani & A. Robert Calderbank (March 1999). "Space–time block coding for wireless communications: performance results" (PDF). IEEE Journal on Selected Areas in Communications. 17 (3): 451–460. doi:10.1109/49.753730. Archived from the original (PDF) on 2009-12-29.
[19] N. Fatema, G. Hua, Y. Xiang, D. Peng and I. Natgunanathan, "Massive MIMO Linear Precoding: A Survey," in IEEE Systems Journal, vol. 12, no. 4, pp. 3920-3931, Dec. 2018, doi: 10.1109/JSYST.2017.2776401.
[20] M. Vu and A. Paulraj, "MIMO Wireless Linear Precoding," in IEEE Signal Processing Magazine, vol. 24, no. 5, pp. 86-105, Sept. 2007, doi: 10.1109/MSP.2007.904811.
[21] C. Mollén, U. Gustavsson, T. Eriksson and E. G. Larsson, "Out-of-band radiation measure for MIMO arrays with beamformed transmission," 2016 IEEE International Conference on Communications (ICC), 2016, pp. 1-6, doi: 10.1109/ICC.2016.7511629.