簡易檢索 / 詳目顯示

研究生: 蕭柏中
PO-Chung Hsiao
論文名稱: 以微粒影像測速儀探討被動式陣列纖毛在週期性流動下之流場
Investigation Flow Field of The Passive Cilia Array Induced by Periodic Flow with PIV
指導教授: 田維欣
Wei-Hsin Tien
口試委員: 周鼎贏
Dean Chou
曹嘉文
Chia-Wen Tsao
陳品銓
Pin-Chuan Chen
莊程媐
Chen-Hsi Chuang
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2020
畢業學年度: 108
語文別: 中文
論文頁數: 134
中文關鍵詞: 陣列纖毛流場可視化微粒影像測速儀
外文關鍵詞: Array Cilia, Flow Visualization, Particle Image Velocimetry
相關次數: 點閱:312下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

纖毛在人體中有許多重要的功能,如養分輸送、保持表面清潔等,缺乏纖毛可能導致如腦積水等疾病,其對著人體中器官內近壁面上的流體流動有很大的影響。本研究使用微粒影像測速儀(Particle Image Velocimetry)探討流道中被動式纖毛對流場之影響,希望藉由沉水泵浦與三通球閥模擬類似在人體腦室中液體受到心臟收縮舒張形成的雙向流動。本研究製作之纖毛陣列最大長寬比為200:1,以PIV 觀察不同纖毛長度(L=0.7cm~1.3cm)、長寬比(100:1~200:1)、不同纖毛排數(R=1~3 排,每排間隔1mm)以及不同纖毛間距(D=3.75mm~1mm),探討在擁有不同的纖毛密度壁面對流場的影響。研究結果中發現不同的纖毛長度影響著最大速度發生的位置,纖毛長度由長至短其最大速度發生位置依序由高到低;不同的纖毛排數影響著含有纖毛壁面與無纖毛壁面的速度差值,排數越多則速度差值越大;不同的纖毛間距影響著流經纖毛頂部至底部之間的速度變化率,間距越小則受到纖毛影響的程度越大,說明纖毛密度對流場有著密切的關聯,陣列的被動式纖毛將影響靠近壁面之流場變化,陣列密度越密則被動式纖毛產生的現象則越明顯。


Cilia in the human body perform important functions, such as enhancing the nutrients transportation and keeping surfaces clean. Lack of cilia may cause diseases like hydrocephalus. It greatly affects the flow of fluids on the near-wall regions of the organs in the human body. In this study, Particle Image Velocimetry (PIV) was used to investigate the influence of passive cilia on the flow field in the flow channel. The submerged pump and the three-way ball valve are used to simulate the bi-directional flow in the ventricles of human body caused by cardiac cycle. The maximum aspect ratio of the cilia array in this study is 200:1. The flows were investigated by PIV with different cilia length (L=0.7cm~1.3cm), aspect ratio (100:1~200:1), different number of cilia rows (R=1~3 rows, each row spacing 1mm) and different cilia spacing (D=3.75mm~1mm) to investigate the influence of cilia density on the flow field and to the wall. The results show that different cilia length affects the location of where the maximum velocity occurs. Longer Cilia length leads to higher location of the maximum velocity, and the number of cilia rows affect the velocity difference of cilia containing and non-ciliated walls. Higher number of rows, lead to greater velocity differences and different cilia spacing affects the rate of velocity change from the top to the bottom of the cilia. Smaller the spacing can cause more cilia interference, indicating that the cilia density is closely related to the flow field near the wall.

第一章 緒論................................................................................................................ 1 1.1 介紹............................................................................................................ 1 1.2 文獻回顧.................................................................................................... 2 纖毛應用以及相關技術................................................................ 2 利用PIV/PTV 技術進行之相關研究 .......................................... 8 小結.............................................................................................. 10 1.3 研究目的.................................................................................................. 12 1.4 論文架構.................................................................................................. 12 第二章 實驗原理與方法.......................................................................................... 13 2.1 陣列纖毛流道模型.................................................................................. 13 流道設計構思.............................................................................. 13 壓克力流道製作.......................................................................... 14 纖毛模型製作.............................................................................. 16 週期流動變化之設置.................................................................. 19 2.2 PIV 量測技術 .......................................................................................... 24 光學實驗量測系統設置.............................................................. 24 工作流體與循跡微粒.................................................................. 26 高速攝影系統.............................................................................. 27 資料後處理.................................................................................. 29 實驗步驟流程.............................................................................. 34 2.3 有限元素法流固耦合模擬...................................................................... 36 2.4 實驗設置參數.......................................................................................... 40 第三章 結果與討論.................................................................................................. 43 3.1 有/無纖毛流場之微粒測速分析結果 .................................................... 43 3.1.1 無纖毛流場.................................................................................. 45 3.1.2 含有纖毛模型之流場.................................................................. 48 3.1.3 含有纖毛模型之模擬結果.......................................................... 51 3.1.4 小結.............................................................................................. 54 3.2 不同參數纖毛模型之微粒測速分析結果.............................................. 56 3.2.1 Case 1~12(固定長度0.7cm)之觀測結果 ................................... 56 3.2.2 Case 13~24(固定長度1 cm)之觀測結果 ................................... 70 3.2.3 Case 25~36(固定長度1.3 cm)之觀測結果 ................................ 83 3.2.4 小結.............................................................................................. 96 3.3 比較不同纖毛模型參數之速度分佈...................................................... 97 3.3.1 探討不同長度對流場影響.......................................................... 97 3.3.2 探討不同排數對流場影響........................................................ 100 3.3.3 探討不同間距對流場影響........................................................ 103 3.3.4 小結............................................................................................ 105 3.4 不同切面之微粒測速分析結果............................................................ 106 3.4.1 Case 28 在XZ 平面之觀測結果 .............................................. 107 第四章 結論與建議................................................................................................ 113 4.1 結論........................................................................................................ 113 4.2 建議及未來工作.................................................................................... 114 參考文獻.................................................................................................................... 115 附錄............................................................................................................................ 117

[1] S. N. Khaderi et al., "Magnetically-actuated artificial cilia for microfluidic propulsion," (in English), Lab on a Chip, Article vol. 11, no. 12, pp. 2002-2010, 2011.
[2] B. Siyahhan et al., "Flow induced by ependymal cilia dominates near-wall cerebrospinal fluid dynamics in the lateral ventricles," (in English), Journal of the Royal Society Interface, Article vol. 11, no. 94, p. 10, May 2014, Art. no. 20131189.
[3] G. Kokot et al., "Measurement of fluid flow generated by artificial cilia," (in English), Biomicrofluidics, Article vol. 5, no. 3, p. 9, Sep 2011, Art. no. 034103.
[4] D. Smith, J. Blake, and Gaffney, "Fluid mechanics of nodal flow due to embryonic primary cilia," vol. 5, no. 22, pp. 567-573, 2008.
[5] J. Hussong, N. Schorr, J. Belardi, O. Prucker, J. Rühe, and Westerweel, "Experimental investigation of the flow induced by artificial cilia," vol. 11, no. 12, pp. 2017-2022, 2011.
[6] O. H. Shapiro et al., "Vortical ciliary flows actively enhance mass transport in reef corals," vol. 111, no. 37, pp. 13391-13396, 2014.
[7] E. Milana, B. Gorissen, S. Peerlinck, M. De Volder, and D. Reynaerts, "Artificial Soft Cilia with Asymmetric Beating Patterns for Biomimetic Low-Reynolds-Number Fluid Propulsion," (in English), Advanced Functional Materials, Article vol. 29, no. 22, p. 8, May 2019, Art. no. 1900462.
[8] B. Gorissen, M. De Volder, and Reynaerts, "Pneumatically-actuated artificial cilia array for biomimetic fluid propulsion," vol. 15, no. 22, pp. 4348-4355, 2015.
[9] S. Jonas, D. Bhattacharya, M. K. Khokha, and Choma, "Microfluidic characterization of cilia-driven fluid flow using optical coherence tomography-based particle tracking velocimetry," vol. 2, no. 7, pp. 2022-2034, 2011.
[10] M. Schibli et al., "In-vitro measurement of ventricular cerebrospinal fluid flow using particle tracking velocimetry and magnetic resonance imaging," in 2008 First International Symposium on Applied Sciences on Biomedical and Communication Technologies, 2008, pp. 1-5: IEEE.
[11] Prasad, "Particle image velocimetry," vol. 79, no. 1, pp. 51-60, 2000.
[1] S. N. Khaderi et al., "Magnetically-actuated artificial cilia for microfluidic propulsion," (in English), Lab on a Chip, Article vol. 11, no. 12, pp. 2002-2010, 2011.
[2] B. Siyahhan et al., "Flow induced by ependymal cilia dominates near-wall cerebrospinal fluid dynamics in the lateral ventricles," (in English), Journal of the Royal Society Interface, Article vol. 11, no. 94, p. 10, May 2014, Art. no. 20131189.
[3] G. Kokot et al., "Measurement of fluid flow generated by artificial cilia," (in English), Biomicrofluidics, Article vol. 5, no. 3, p. 9, Sep 2011, Art. no. 034103.
[4] D. Smith, J. Blake, and Gaffney, "Fluid mechanics of nodal flow due to embryonic primary cilia," vol. 5, no. 22, pp. 567-573, 2008.
[5] J. Hussong, N. Schorr, J. Belardi, O. Prucker, J. Rühe, and Westerweel, "Experimental investigation of the flow induced by artificial cilia," vol. 11, no. 12, pp. 2017-2022, 2011.
[6] O. H. Shapiro et al., "Vortical ciliary flows actively enhance mass transport in reef corals," vol. 111, no. 37, pp. 13391-13396, 2014.
[7] E. Milana, B. Gorissen, S. Peerlinck, M. De Volder, and D. Reynaerts, "Artificial Soft Cilia with Asymmetric Beating Patterns for Biomimetic Low-Reynolds-Number Fluid Propulsion," (in English), Advanced Functional Materials, Article vol. 29, no. 22, p. 8, May 2019, Art. no. 1900462.
[8] B. Gorissen, M. De Volder, and Reynaerts, "Pneumatically-actuated artificial cilia array for biomimetic fluid propulsion," vol. 15, no. 22, pp. 4348-4355, 2015.
[9] S. Jonas, D. Bhattacharya, M. K. Khokha, and Choma, "Microfluidic characterization of cilia-driven fluid flow using optical coherence tomography-based particle tracking velocimetry," vol. 2, no. 7, pp. 2022-2034, 2011.
[10] M. Schibli et al., "In-vitro measurement of ventricular cerebrospinal fluid flow using particle tracking velocimetry and magnetic resonance imaging," in 2008 First International Symposium on Applied Sciences on Biomedical and Communication Technologies, 2008, pp. 1-5: IEEE.
[11] Prasad, "Particle image velocimetry," vol. 79, no. 1, pp. 51-60, 2000.
[12] W. Li, D. Roggenkamp, W. Jessen, M. Klaas, Schröder, and Technology, "Reynolds number effects on the fluctuating velocity distribution in wall-bounded shear layers," vol. 28, no. 1, p. 015302, 2016.
[13] F. X. Zhang et al., "IN VITRO AND PRELIMINARY IN VIVO VALIDATION OF ECHO PARTICLE IMAGE VELOCIMETRY IN CAROTID VASCULAR IMAGING," (in English), Ultrasound in Medicine and Biology, Article vol. 37, no. 3, pp. 450-464, Mar 2011.
[14] T. D. Nguyen, J. C. Wells, and C. V. Nguyen, "Wall shear stress measurement of near-wall flow over inclined and curved boundaries by stereo interfacial particle image velocimetry," (in English), International Journal of Heat and Fluid Flow, Article vol. 31, no. 3, pp. 442-449, Jun 2010.
[15] K. Kiyota et al., "Fluctuation of cilia-generated flow on the surface of the tracheal lumen," vol. 306, no. 2, pp. L144-L151, 2014.
[16] K. Kikuchi, T. Haga, K. Numayama-Tsuruta, H. Ueno, and Ishikawa, "Effect of fluid viscosity on the cilia-generated flow on a mouse tracheal lumen," vol. 45, no. 4, pp. 1048-1057, 2017.
[17] A. C. Balazs, A. Bhattacharya, A. Tripathi, and H. Shum, "Designing Bioinspired Artificial Cilia to Regulate Particle-Surface Interactions," (in English), Journal of Physical Chemistry Letters, Article vol. 5, no. 10, pp. 1691-1700, May 2014.
[18] 賴建霖著, 以微粒影像測速儀探討二階靜電集塵器內之充電微粒軌跡 Study of Charged Particle Trajectories in a Two-Stage Electrostatic Precipitator Using Particle Image Velocimetry. 臺北市: 著者, 2019, p. 116葉.
[19] W. Thielicke and Stamhuis, "PIVlab–towards user-friendly, affordable and accurate digital particle image velocimetry in MATLAB," vol. 2, no. 1, 2014.
[20] M. Einian, D. J. Bergstrom, and D. Sumner, "Numerical simulation of the flow around a surface-mounted finite square cylinder," in Fluids Engineering Division Summer Meeting, 2010, vol. 54518, pp. 103-110.

QR CODE