簡易檢索 / 詳目顯示

研究生: 賴威穎
Wei-Ying LAI
論文名稱: 溶液態MEH-PPV/ZnO中奈米粒子對光物理特性的影響
Influence of Nanoparticles in Photophysical Properties in Hybrids of MEH-PPV/ZnO in Solution State
指導教授: 胡孝光
Shiaw-Guang Hu
口試委員: 王立義
none
戴子安
none
戴龑
Yian Tai
學位類別: 碩士
Master
系所名稱: 工程學院 - 材料科學與工程系
Department of Materials Science and Engineering
論文出版年: 2011
畢業學年度: 99
語文別: 中文
論文頁數: 65
中文關鍵詞: 消光效應光激發光效率激子擴散係數激子擴散長度
外文關鍵詞: quenching, photoluminescence quantum efficiency, exciton diffusion coefficient, exciton diffusion length
相關次數: 點閱:334下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

摘要
本研究藉由改變poly(2-methoxy,5-(2’-ethyl-hexoxy)-1,4-phenylene vinylene)(MEH-PPV)/ZnO nanoparticles(NPs)溶液中ZnO NPs的添加量,從UV-Vis吸收光譜和光激發光光譜分析其光學特性,探討MEH-PPV與ZnO NPs之間電荷載子的傳遞方式及其消光效應。接著再以UV-Vis吸收光譜、光激發光光譜與時間解析光激發光光譜結合Strickler-Berg equation計算MEH-PPV溶液態光激發光量子效率,並藉由文獻來輔助推論MEH-PPV/ZnO NPs溶液態光激發光量子效率之定性趨勢。由擴散控制淬熄速率數據來估算MEH-PPV/ZnO NPs溶液態激子擴散係數,之後再探討隨著ZnO NPs添加量而改變的激子擴散長度變化。此外,藉由MEH-PPV溶於不同溶劑及MEH-PPV/ZnO NPs溶液中ZnO NPs添加量的不同,從光激發光光譜中分析各電子躍遷發射帶,探討濃度、溶劑及ZnO NPs添加量對Huang-Rhys factor之影響。
由UV-Vis吸收光譜顯示隨著ZnO NPs的添加量增加,MEH-PPV的最大吸收波長會有藍位移的情形產生;而光激發光光譜的消光效應是由高分子在界面上受ZnO NPs影響所造成。由Stern-Volmer equation計算而得的消光係數(Ks),與文獻報導相比,顯示本實驗ZnO NPs(20 nm)的消光效果大於較小的ZnO NPs。
另外,隨著ZnO NPs的添加量增加,MEH-PPV/ZnO NPs溶液態光激發光量子效率之定性趨勢是下降的,且小於在純MEH-PPV溶液態的效率。MEH-PPV/ZnO NPs溶液態激子擴散係數D_E為7.1×10-4 cm2/s,與文獻報導有所差異可能是因為激子擴散係數為受發光物質的狀態及受體物種所影響。隨著ZnO NPs添加量的增加,激子擴散長度變短,即激子擴散至界面處所需的時間變短。此結果透露出ZnO NPs的含量改變,激子擴散係數不受影響,因此影響激子擴散長度的為激子生命期。
固定濃度下的MEH-PPV於不同溶劑中的Huang-Rhys factor會隨著極性增加而變大,但在極性較高的情況下,Huang-Rhys factor值的的變化不明顯。而在MEH-PPV/ZnO NPs溶液中,隨著ZnO NPs添加量的增加,使Huang-Rhys factor變小,可能是因為ZnO NPs改變了MEH-PPV周遭環境的極性,及隨後的電荷分離。


Abatract
This work is to prepare the hybrid solutions of poly(2-methoxy, 5-(2'-
ethylhexyloxy)-1,4-phenylene vinylene) (MEH-PPV)/ZnO nanoparticles
(NPs) with various amounts of ZnO NPs, and the optical properties were investigated by UV-Vis and photoluminescence spectroscopy. Furthermore, the quenching effect and the charge transfer between MEH-PPV and ZnO NPs was observed. The UV-Vis spectra, steady and time-resolved photoluminescence were combined with Strickler-Berg equation to obtain the photoluminescence quantum efficiency of MEH-PPV in solutions. With the aid of literature, the qualitative trend of photoluminescence quantum efficiency for the hybrid solutions of MEH-PPV/ZnO NPs were assessed. Data came from diffusion-controlled quenching rate was used to determine the exciton diffusion coefficient for the hybrid solutions of MEH-PPV/ZnO NPs. Further, the exciton diffusion length was studied. In addition, we analyze the vibronic bands of transitions from photoluminescence spectra for MEH-PPV dissolved in various solvents and the hybrid solutions of MEH-PPV/ZnO NPs with various amounts of ZnO NPs. Thereafter, the effect of Huang-Rhys factor influenced by concentration, solvent and ZnO NPs was discussed.
While increasing ZnO NPs, UV-Vis spectra shows the maximum absorption wavelength of MEH-PPV bands with a blue shift for these hybrids. And the quenching of PL spectra is attributed to ZnO NPs at the interface of MEH-PPV. Comparing data from the literature at ZnO NPs size =12 nm, the Stern-Volmer constant of MEH-PPV calculated from Stern-Volmer equation in this work shows better quenching effect at ZnO NPs size =20 nm.
The qualitative trend of photoluminescence quantum efficiency for the hybrid solutions of MEH-PPV/ZnO NPs are decreased with increasing ZnO NPs. Meanwhile, the photoluminescence quantum efficiency is all lower than pure MEH-PPV for the hybrid solutions of MEH-PPV/ZnO NPs. The exciton diffusion coefficient DE is 7.1×10-4 cm2/s for the hybrid solutions of MEH-PPV/ZnO NPs. With reference to literature values, it shows a effect on polymer exciton diffusion, due to the state of MEH-PPV and the species of acceptor. The exciton diffusion length is decreased with the addition of ZnO NPs, and times for the exciton diffusing to the interface between MEH-PPV and ZnO NPs are decreased. It was found that the exciton diffusion length is not influenced by exciton diffusion coefficient, but by exciton lifetime.
At same concentration, Huang-Rhys factor for MEH-PPV in various solvents increase with the polarity. However, at the condition of high polarity, the Huang-Rhys factor is not varied significantly. On the other hand, Huang-Rhys factor for the hybrid solutions of MEH-PPV/ZnO NPs was decreased with the addition of ZnO NPs. The result is due to ZnO- affected polarity of surroundings around MEH-PPV and the process of charge transfer.

目錄 中文摘要…………………………………………………………………I 英文摘要………………………………………………………………III 誌謝……………………………………………………………………V 目錄……………………………………………………………………VI 圖表目錄……………………………………………………………VIII 溶液態MEH-PPV/ZnO中奈米粒子對光物理特性的影響 前言………………………………………………………………1 實驗方法………………………………………………………6 2.1 溶液態樣本之配製……………………………………………6 2.1.1MEH-PPV高分子溶液之配製………………………6 2.1.2MEH-PPV與ZnO nanoparticles溶液之配製……6 2.2光譜分析………………………………………………………6 2.2.1 UV-Vis吸收光譜分析…………………………………7 2.2.2光激發光光譜分析……………………………………7 2.2.3時間解析光激發光譜分析……………………………7 結果與討論………………………………………………………10 3.1MEH-PPV/ZnO NPs溶液態光譜分析…………………10 3.1.1UV-Vis吸收光譜分析………………………………10 3.1.2光激發光光譜分析…………………………………11 3.1.3消光係數之探討……………………………………13 3.1.4激子固有生命期……………………………………14 3.1.5時間解析光激發光光譜分析………………………16 3.1.6光激發光量子效率…………………………………18 3.1.7激子擴散擴散係數與長度…………………………19 3.1.8MEH-PPV與MEH-PPV/ZnO NPs溶液之Huang-Rhys factor.…………………………………………………22 3.1.8.1MEH-PPV中濃度與溶劑對Huang-Rhys factor之影響………………………………………23 3.1.8.2 MEH-PPV/ZnO NPs中ZnO NPs對Huang-Rhys factor的影響…………………23 結論………………………………………………………………25 參考文獻…………………………………………………………27 圖表索引 Table 1.Energy gap (Eg) for MEH-PPV and the hybrids of MEH-PPV/ZnO NPs with various mass ratios in THF.…34 Table 2.Solvent refractive index (n), 〈v_f^(-3) 〉_Av^(-1), ∫_14285^25000▒ε(v)dlnv, and intrinsic exciton lifetime (τ0) for MEH-PPV in THF.………35 Table 3.Exciton lifetime (τ) for MEH-PPV and the hybrids of MEH-PPV/ZnO NPs with various mass ratios in THF.………………………………………………………36 Table 4.Summary of the measured lifetime (τ) and the intrinsic radiation lifetime (τ0) for MEH-PPV and the composites containing 20, 40, 60 and 80 wt% CdSe nanoparticles. The experimental data are from reference23……………………37 Table 5. Summary of the measured lifetime (τ) and the intrinsic radiation lifetime (τ0) for MEH-PPV and the composites containing 20, 40, 60 and 80 wt% TiO2 nanorods. The experimental data are from reference24……………………38 Table 6.Summary of the radiative decay constant ("k" _"r" ) and the nonradiative decay constant ("k" _"nr" ) for MEH-PPV and the composites containing 20, 40, 60 and 80 wt% CdSe nanoparticles. The experimental data are from reference23)…………………………………………………39 Table 7. Summary of the radiative decay constant ("k" _"r" ) and the nonradiative decay constant ("k" _"nr" ) for MEH-PPV and the composites containing 20, 40, 60 and 80 wt% TiO2 nanorods. The experimental data are from reference24………………40 Table 8.Summary of the PL quantum efficiency ("∅" _PL) for MEH-PPV and the composites containing 20, 40, 60 and 80 wt% CdSe nanoparticles. The experimental data are from reference23.…………………………………………………41 Table 9.Summary of the PL quantum efficiency ("∅" _PL) for MEH-PPV and the composites containing 20, 40, 60 and 80 wt% TiO2 nanorods. The experimental data are from reference24. ……42 Table 10.Summary of exciton diffusion coefficient ("D" _"E" ) for MEH-PPV in solution and solid state.…………………………………43 Table 11.Exciton diffusion length (L) for MEH-PPV and the hybrids of MEH-PPV/ZnO NPs with various mass ratios in THF.…44 Table 12.Concentration effects on intensity of 0-0 and 0-1 transitions for MEH-PPV in various solvents..………………………45 Table 13.Huang–Rhys factors for MEH-PPV in various solvents and concentrations.……………………………………………46 Table 14. Intensity of 0-0 and 0-1 transitions and Huang–Rhys factors for MEH-PPV and the hybrids of MEH-PPV/ZnO NPs with various mass ratios.…………………………………………47 Figure 1.Chemical structure of poly(2-methoxy,5-(2’-ethyl-hexoxy)-1, 4-phenylenevinylene)(MEH-PPV).………………………9 Figure 2.UV-Vis spectra around 400 ~ 700 nm for MEH-PPV and the hybrids of MEH-PPV/ZnO NPs with various mass ratios in THF..………………………………………………………48 Figure 3.UV-Vis spectra of ZnO nanooarticles (solid line) and MEH-PPV (dashed line) in THF. PL spectra of MEH-PPV (dotted line) in THF.(excitation wavelength = 500 nm)…49 Figure 4.PL spectra around 515 ~ 690 nm for MEH-PPV and the hybrids of MEH-PPV/ZnO NPs with various mass ratios in THF…………………………………………………………50 Figure 5.Relative emission intensity of the hybrids of MEH-PPV/ZnO NPs as a function of mass ratios of ZnO NPs to MEH-PPV…………………………………………………51 Figure 6.Route of charge transfer in the hybrids of MEH-PPV/ZnO NPs.(LUMO:lowest unoccupied molecular orbital, HOMO:highest occupied molecular orbital, CB:conduction band, VB:valence band)………………………………………………52 Figure 7.Stern-Volmer plots for fluorescence quenching of MEH-PPV by ZnO nanoparticles with size = (◆)20 nm and (▲)12 nm (from reference17) in THF…………………………………53 Figure 8.Plots of I versus ν for MEH-PPV in THF.(Concentration = 5×10-3 mg/ml)………………………………………………54 Figure 9.Plots of Iν-3 versus ν for MEH-PPV in THF.(Concentration = 5×10-3 mg/ml)………………………………………………55 Figure 10.Plots of ε versus lnν for MEH-PPV in THF.(Concentration = 5×10-3 mg/ml)………………………………………………56 Figure 11.Time-resolved PL spectra for MEH-PPV and the hybrids of MEH-PPV/ZnO NPs with various mass ratios of (a)1:0, (b)1:2 and (c)1:4.…………………………………………57 Figure 12.Time-resolved PL spectra for the hybrids of MEH-PPV/ZnO NPs with various mass ratios of (a)1:4, (b)1:10 and (c)1:20.……………………………………………………58 Figure 13.Plots of 1/τ versus N for the hybrids of MEH-PPV/ZnO NPs with various contains of ZnO nanoparticles………………59 Figure 14.Illustration of the Franck-Condon principle for energy diagram of electronic transitions due to phonon coupling in absorption and emission. (from reference 48)……………60 Figure 15.Normalized PL spectra fitted by Guassian curves for MEH-PPV in THF with various concentrations of (a)5×10-4 mg/ml, (b)5×10-3 mg/ml and (c)5×10-2 mg/ml.……………61 Figure 16.Normalized PL spectra fitted by Guassian curves for MEH-PPV in toluene with various concentrations of (a)5×10-4 mg/ml, (b)5×10-3 mg/ml and (c)5×10-2 mg/ml.……………62 Figure 17.Normalized PL spectra fitted by Guassian curves for MEH-PPV in chloroform with various concentration of (a)5×10-4 mg/ml, (b)5×10-3 mg/ml and (c)5×10-2 mg/ml.…63 Figure 18.Normalized PL spectra fitted by Guassian curves for the hybrids of MEH-PPV/ZnO NPs in THF with various mass ratios of (a)1:0, (b)1:1, (c)1:2, (d)1:4 and (e)1:10.…………64

六、參考文獻
D. D. C. Bradley, Electroluminescence: A Bright Future For Conjugated Polymers, Adv. Mater., 4, 756 (1992).
D. D. Gebler, Y. Z. Wang, J. W. Blatchford, S. W. Jessen, D. K. Fu, T. M. Swager, A. G. MacDiarmid, A. J. Epstein, Exciplex emission in bilayer polymer light-emitting devices, Appl. Phys. Lett., 70, 1644 (1997).
Y. Shi, J. Liu, Y. Yang, Device performance and polymer morphology in polymer light emitting diodes: The control of thin film morphology and device quantum efficiency, J. Appl. Phys., 87, 4254 (2000).
U. Lemmer, D. Vacar, D. Moses, A. J. Heeger, T. Ohnishi, T. Noguchi, Electroluminescence from poly(phenylene vinylene) in a planar metal-polymer-metal structure, Appl. Phys. Lett., 68, 3007 (1996).
H. Antoniadis, M. A. Abkowitz, J. A. Osahemi, S. A. Jenekhe, M. Stolka, Generation and drift of photocarriers in a conjugated ladder polymer, Synth. Met., 60, 149 (1993).
W. Rieβ, S. Karg, V. Dyakonov, M. Meier, M. Schwoerer, Electroluminescence and photovoltaic effect in PPV Schottky diodes, J. Lumin., 60, 906 (1994).
N. S. Sariciftci, D. Braum, C. Zhang, V. I. Srdanov, A. J. Heeger, G. Stucky, F. Wudl, Semiconducting polymer-buckminsterfullerene heterojunctions: Diodes, hotodiodes, and photovoltaic cells, Appl. Phys. Lett., 62, 585 (1993).
G. J. Lee, D. Kim, J. I. Lee, H. K. Shim, Y. W. Kim, J. C. Jo, Efect of Alkoxy Substitution on Photophysical Properties of Poly(p-phenylenevinylene), Jpn. J. Appl. Phys., 35, 114 (1996).
M. R. Anderson, B. R. Matters, H. Reiss, R. B. Kaner, Conjugated Polymer Films for Gas Separations, Science, 252, 1412 (1991).
A. Ohtani, A. M. Ezoe, T. Doi, T. Miyata, A. Miyaka, Synthesis and properties of high-molecular-weight soluble polyaniline and its application to the 4MB-capacity barium ferrite floppy disk’s antistatic coating, Synth. Met., 55-57, 3696 (1993).
J. Nelson, Organic photovoltaic films, Curr. Opin. Solid State Mater. Sci., 6, 87 (2002).
J. Wang, D. Wang, D. Moses, A. J. Heeger, Dynamic Quenching of 5-(2’-Ethyl-hexyloxy)-p-Phenylene Vinylene (MEH-PPV) by Charge Transfer to a C60 Derivative in Solution, J. Appl. Phys., 78, 4510 (2001).
A. Haugeneder, M. Neges, C. Kallinger, W. Spirkl, U. Lemmer, J. Felmann, Exciton diffusion and dissociation in conjugated polymer/fullerene blends and heterostructures, Phys. Rev. B, 59, 15346 (1999).
J. J. Dittmer, R. Lazzaroni, Ph. Lecle ̀re, P. Moretti, M. Gransto ̈m, K. Petritsch, E. A. Marseglia, R. H. Friend, J. L. Bre ́das, H. Rost, A. B. Holme, Crystal network formation in organic solar cells, Sol. Energy Mater. Sol. Cells, 61, 53 (2000).
J. J. Dittmer, E. A. Marseglia, R. H. Friend, Electron Trapping in Dye/Polymer Blend Photovoltaic Cells, Adv. Mater., 12, 1270 (2000).
J. H. Warner, A. R. Watt, E. Thomsen, N. Heckenberg, P. Meredith, H. R. Dunlop, Energy Transfer Dynamics of Nanocrystal-Polymer Composites, J. Phys. Chem., 109, 9001 (2005).
R. Jetson, K. Yin, K. Donovan, Z. Zhu, Effects of surface modification on the fluorescence properties of conjugated polymer/ZnO nanocomposites, Mater. Chem. Phys., 124, 417 (2010).
I. Park, Y. Lim, S. Noh, D. Lee, M. Meister, J. J. Amsden, F. Laquai, C. Lee, Do Y. Yoon, Enhanced photovoltaic performance of ZnO nanoparticle/poly(phenylene vinylene) hybrid photovoltaic cells by semiconducting surfactant, Org. Electron., 12, 424 (2011).
N. C. Greenham, X. G. Peng, A. P. Alivisatos, Charge separation and transport in conjugated-polymer/semiconductor-nanocrystal composites studied by photoluminescence quenching and photoconductivity, Phys. Rev. B, 54, 17628 (1996).
S. H. Yang, T. P. Nguen, P. Le Rendu, C. S. Hsu, Optical and electrical investigations of poly(p-phenylene vinylene)/silicon oxide and poly(p-phenylene vinylene)/titanium oxide nanocomposites, Thin Solid Films, 471, 230 (2005).
W. J. E. Beek, M. M. Wienk, R. A. J. Janssen, Hybrid Solar Cells from Regioregular Polythiophene and ZnO Nanoparticles, Adv. Funct. Mater., 16, 1112 (2006).
S. J. Strickler, R. A. Berg, Relationship between Absorption Intensity and Fluorescence Lifetime of Molecules, J. Chem. Phys., 37, 814 (1962).
Y. Y. Lin, C. W. Chen, J. Chang, T. Y. Lin, I. S. Liu, W. F. Su, Exciton dissociation and migration in enhanced order conjugated polymer/nanoparticle hybrid materials, Nanotechnology, 17, 1260 (2006).
Y. T. Lin, T. W. Zeng, W. Z. Lai, C. W. Chen, Y. Y. Lin, Y. S. Chang, W. F. Su, Efficient photoinduced charge transfer in TiO2 nanorod/conjugated polymer hybrid materials, Nanotechnology, 17, 5781 (2006).
V. S. Reddy, A. Dhar, Optical and charge carrier transport properties of polymer light emitting diodes based on MEH-PPV, Physica B, 405, 1596 (2010).
M. A. T. de Silva, I. F. Dias, J. L. Duarte, E. Laureto, I. Silvestre, L. A. Cury, P. S. S. Guimara ̃es, Identification of the optically active vibrational modes in the photoluminescence of MEH-PPV films, J. Chem. Phys., 128, 094902 (2008).
R. A. Silva, L. A. Cury, A. Marletta, P. S. S. Guimara ̃es, M. Bouachrine, J. -P. Le ̀re-Porte, J. E. Moreau, F. Serein-Spirau, Absorption and photoluminescence of a new thienylene–phenylene copolymer, J. Non Cryst. Solids, 352, 3685 (2006).
J. Piris, T. E. Dykstra, A. A. Bakulin, P. H. M. van Loosdrecht, W. Knulst, M. T. Trinh, J. M. Schins, L. D. A. Siebbeles, Photogeneration and Ultrafast Dynamics of Excitons and Charges in P3HT/PCBM Blends, J. Phys. Chem. C, 113, 14500 (2009).
T. –W. F. Chang, S. Musikhin, L. Bakueva, L. Levina, M. A. Hines, P. W. Cyr, E. H. Sargent, Efficient excitation transfer from polymer to nanocrystals, Appl. Phys. Lett., 84, 4295 (2004).
A. Tang, F. Teng, S. Xiong, Y. Wang, B. Feng, Y. Hou, Investigation on Nanocrystals/Polymer Light-Emitting Diodes with Different-Sized Water-Sol CdSe Nanocrystals, J. Electrochem. Soc., 155, 190 (2008).
M. Anni, L. Manna, R. Cingolani, D. Valerini, A. Creti ́, M. Lomascolo, Forster energy transfer from blue-emitting polymers to colloidal CdSe/ZnS core shell quantum dots, Appl. Phys. Lett., 85, 18 (2004).
S. Kaufmann, T. Sto ̈ferle, N. Moll, R. F. Mahrt, U. Scherf, D. V. Talapin, C. B. Murray, Resonant energy transfer within a colloidal nanocrystal polymer host system, Appl. Phys. Lett., 90, 071108 (2007).
T. Sto ̈ferle, U. Scherf, R. F. Mahrt, Energy Transfer in Hybrid Organic/ Inorganic Nanocomposites, Nano. Lett., 9, 453 (2009).
H. Boaz, G. K. Rollefson, The Quenching of Fluorescence. Deviations from the Stern-Volmer Law, J. Am. Chem. Soc., 72, 3435 (1950)
J. R. Lakowicz, Principle of Fluorescence Spectroscopy, 3rd ED., New York, pp. 278-282 (2010).
I. D. W. Samuel, B. Crystall, G. Rumbles, P. L. Burn, A. B. Holmes, R. H. Friend, The efficiency and time-dependence of luminescence from poly (p-phenylene vinylene ) and derivatives, Chem. Phys. Lett., 231, 472 (1993).
I. D. W. Samuel, G. Rumbles, C. J. Collison, Exciton dynamics in electroluminescent polymers studied by femtosecond time-resolved photoluminescence spectroscopy, Phys. Rev. B, 52, 11573 (1995).
I. D. W. Samuel, G. Rumbles, C. J. Collison, R. H. Friend, S. C. Moratti, A. B. Holmes, Picosecond Time-Resolved Photoluminescence of PPV Derivatives, Synth. Met., 84, 497 (1997).
L. Smilowitz, A. Hays, A. J. Heeger, G. Wang, J. E. Bowers, Time-resolved photoluminescence from poly[2-methoxy, 5-(2' -ethylhexyloxy)- p-phenylene-vinylene]: Solutions, gels, films, and blends, J. Chem. Phys., 98, 15 (1992).
C. Chi, C. Im, G. Wegner, Lifetime determination of fluorescence and phosphorescence of a series of oligofluorenes, J. Chem. Phys., 124, 024907 (2006).
N. J. Turro, Molecular Photochemistry, W. A. Benjamin, New York, (1967).
M. Klessinger, J. Michl, Excited State and Photochemistry of Organic Molecules, VCH Publishing, New York, (1995).
A. J. Lewis, A. Ruseckas, O. P. M. Gaudin, G. R. Webster, P. L. Burn, I. D. W. Samuel, Singlet exciton diffusion in MEH-PPV films studied by exciton–exciton annihilation, Org. Electron., 7, 452 (2006).
D. E. Markov, C. Tanase, P. W. M. Blom, J. Wildeman, Simultaneous enhancement of charge transport and exciton diffusion in poly(p-phenylene vinylene) derivatives, Phys. Rev. B, 72, 045217 (2005).
C. L. Getinger, A. J. Heeger, J. M. Drake, D. J. Pine, A photoluminescence study of poly(phenylene vinylene) derivatives: The effect of intrinsic persistence length, J. Chem. Phys.,101, 1673 (1994).
T. J. Savenije, J. M. Warman, A. Goossens, Visible light sensitisation of titanium dioxide using a phenylene vinylene polymer, Chem. Phys. Lett., 287, 148 (1998).
J. T. Edward, Molecular volumes and the Stoke-Einstein equation, J. Chem. Educ., 47, 4, (1970)
H. Bassler, B. Schweitzer, Site-Selective Fluorescence Spectroscopy of Conjugated Polymers and Oligomers, Acc. Chem. Res., 32, 173 (1999).
P. J. Brown, D. S. Thomas, A. Ko ̈hler, J. S. Wilson, J. S. Kim, C. M. Ramsdale, H. Sirringhaus, R. H. Friend, Effect of interchain interactions on the absorption and emission of poly(3-hexylthiophene), Phys. Rev. B, 67, 064203 (2003).
S. Quan, F. Teng, Z. Xu, L. Qian, Y. Hou, Y. Wang, X. Xu, Solvent and concentration effects on fluorescence emission in MEH-PPV solution, Eur. Polym. J., 42, 228 (2006).
C. Reichardt, Solvents and Solvent Effects in Organic Chemistry, 2nd ED., VCH Publishing, New York, pp. 408-410 (1998).

無法下載圖示 全文公開日期 2016/07/25 (校內網路)
全文公開日期 本全文未授權公開 (校外網路)
全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
QR CODE