簡易檢索 / 詳目顯示

研究生: 戴子傑
Zih-Jie Tai
論文名稱: 第一原理分子動力學於鋰鹽及電解液在鋰離子電池中與過量電荷環境中之反應研究
First Principles Molecular Dynamic Study on Reactivity of Lithium-salts with Electrolyte and Effects of Excess Electrons on Electrolyte Decomposition at Lithium Anode
指導教授: 江志強
Jyh-Chiang Jiang
口試委員: 黃炳照
Bing-Joe Hwang
蔡明剛
Ming-Kang Tsai
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2019
畢業學年度: 107
語文別: 英文
論文頁數: 121
中文關鍵詞: 鋰離子電池分子動力學鋰鹽電解質分解鋰電極
外文關鍵詞: Li-ion batteries, AIMD, Li-salt, Electrolyte Decomposition, Li anode
相關次數: 點閱:210下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

透過電解質還原反應,在陽極表面形成之固體電解質膜(SEI),是影響鋰離子電池性能的重要因素之一。在電解質組成中,鋰鹽對於在陽極表面上所形成的SEI扮演著非常重要的角色。目前,六氟磷酸鋰(LiPF6)是鋰離子電池中唯一在商業上使用的鋰鹽,因為它具有高溶解性,高離子傳導性和相對便宜的價格。然而,LiPF6經歷自催化分解並產生HF和POF,使它的熱穩定性和化學穩定性受到限制,這都間接導致了鋰電池的安全憂慮。最近我們實驗室開發了一種新型苯並咪唑基鹽類,它具有優於LiPF6的電化學性能,包括雙(三氟硼烷)-5-腈基-2-(三氟甲基)苯並咪唑鋰(LiBTCTB),雙(三氟硼烷)-5-硝基-2鋰 - (三氟甲基)苯並咪唑鋰(LiBTNTB)和雙(三氟硼烷)-2-(三氟甲基)苯並咪唑啉鋰(LiBTTB)。在此研究中,使用分子動力學(AIMD)模擬了這三種新型苯並咪唑基鹽和LiPF6所形成的SEI層來研究分析比較。為了更深入了解這些系統中的SEI層,我們主要研究電解質-鋰電極之界面反應,包括由不同鋰鹽及碳酸亞乙酯(EC)和碳酸二乙酯(DEC)所組成的雙溶劑混合物電解質所發生的分解反應。我們首先發現LiPF6在陽極表面上完全分解並形成LiF。此外,觀察到溶劑EC的反應機制包括了開環及其分解。並對不同苯並咪唑基鋰鹽的反應性與LiPF6進行比較,我們發現LiBTCTB在與鋰電極表面接觸時反應非常快,且與LiPF6相比能更快速的形成SEI層。我們還發現LiBTCTB抑制了溶劑分解,而且LiBTNTB減少了陽極表面上溶劑的分解數量。此外,我們建構了由LiPF6和LiBTCTB與EC和DEC組成的雙鋰鹽系統電解質,且發現了雙鋰鹽系統增加了鋰電極表面上電解質的穩定性,從而改善了SEI層的形成。此外,透過研究過量電子環境對於LiPF6/EC/DEC混合物中SEI層形成的影響,我們的結果表明過量電子的存在引導了電解質分解並在陽極表面上更快地形成SEI層。基於這些理論計算結果,我們預計LiBTCTB將成為下一代鋰離子電池的潛力鋰鹽。


The solid-electrolyte interphase (SEI) layers formation at the anode surface through the reductive decomposition of the electrolyte components is one of the important factors that affect the Lithium-ion battery performance. Among the electrolyte components, the lithium salt has a vital role in the structure of the SEI formed on the anode surface. Presently lithium hexafluorophosphate (LiPF6) is the only commercially utilized lithium salt in the lithium-ion batteries because of its high solubility, high ionic conductivity, and relatively low price. However, thermal and chemical stability of LiPF6 is limited, and it undergoes autocatalytic decomposition and yield HF and POF, which leads to a safety hazard. More recently, our group have developed a novel benzimidazole based salts with superior electrochemical properties to LiPF6 including lithium bis(trifluoroborane)-5-cyano-2-(trifluoromethyl) benzimidazolide (LiBTCTB), lithium bis(trifluoroborane)-5-nitro-2-(trifluoromethyl) benzimidazolide (LiBTNTB), and lithium bis(trifluoroborane)-2-(trifluoromethyl) benzimidazolide (LiBTTB). In this study, a comparative investigation of these three novel benzimidazole based salts and LiPF6 on the formation of the SEI layer has been carried out using ab initio molecular dynamics (AIMD) simulations. To gain insight into SEI formation in these systems, we mainly investigate the interfacial reactions such as decomposition of electrolyte consisting of the different Li salt and the binary solvent mixture ethylene carbonate (EC) and diethyl carbonate (DEC) occurring at the lithium anode surface. We first find that the LiPF6 salt fully decomposed and formed LiF
on the anode surface. Also, the solvent EC reaction mechanisms, including EC ring opening and its decomposition are observed. The reactivity of different benzimidazole based Li salts are compared with LiPF6 salt, and we find that the LiBTCTB salt reacts very fast when in contact with the Li anode surface and forms SEI layer quickly compared to LiPF6. It is also found that LiBTCTB salt inhibits the solvent decomposition and LiBTNTB minimizes the solvent decomposition on the anode surface. We also construct the electrolyte consisting of dual salts LiPF6 and LiBTCTB with EC and DEC mixture and find that dual salt increased the stability of electrolyte on the Li anode surface and thereby improve SEI formation. In addition, we have investigated the effects of excess electrons on the SEI formation in LiPF6/EC/DEC mixture, and our results demonstrate that the presence of excess electrons induces the electrolyte decomposition and forms the SEI layer faster on the anode surface. Based on these theoretical results, we expect that the LiBTCTB salt will be the potential Li salt for the next generation of Li-ion batteries.

Abstract i 摘要 iii Contents vi List of Figures vii List of Tables xi Chapter 1 Introduction 1 1.1 Lithium Ion Battery 1 1.2 The Working Principle of Lithium-ion Battery 3 1.3 Main Components of Li-ion Battery 5 1.3.1 Anode material 6 1.3.2 Cathode material 14 1.3.3 Electrolyte 15 1.4 Solid Electrolyte Interphase (SEI) 22 1.4.1 Components of SEI 24 1.5 Present Study 27 Chapter 2 Theoretical Methodology 29 Chapter 3 Effects of Lithium Salts on Electrolyte Decomposition 32 3.1 LiPF6 Salt Mixtures 32 3.2 Novel Benzimidazole Based Salts 47 3.2.1 LiBTCTB Salt Mixtures 50 3.2.2 LiBTNTB Salt Mixtures 59 3.2.3 LiBTTB Salt Mixture 69 3.3 Summary 79 3.4 Dual (LiPF6 & LiBTCTB) Salts Mixtures 83 Chapter 4 Effects of Excess Electrons on the Electrolyte Decomposition 94 4.1. Introduction 94 4.2 Effects of excess two electrons in LiPF6 salt Mixtures 95 Chapter 5 Conclusions 108 References 110

1. Etacheri, V.; Marom, R.; Elazari, R.; Salitra, G.; Aurbach, D., Challenges in the development of advanced Li-ion batteries: a review. Energ. Environ. Sci. 2011, 4 (9), 3243-3262.
2. Peters, J. F.; Baumann, M.; Zimmermann, B.; Braun, J.; Weil, M., The environmental impact of Li-Ion batteries and the role of key parameters – A review. Renew. Sust. Energ. Rev 2017, 67, 491-506.
3. Hameer, S.; van Niekerk, J. L., A review of large-scale electrical energy storage. Int. J. Energy Res. 2015, 39 (9), 1179-1195.
4. Marom, R.; Amalraj, S. F.; Leifer, N.; Jacob, D.; Aurbach, D., A review of advanced and practical lithium battery materials. J. Mater. Chem. 2011, 21 (27), 9938-9954.
5. Diaz-Gonzalez, F.; Sumper, A.; Gomis-Bellmunt, O.; Villafafila-Robles, R., A review of energy storage technologies for wind power applications. Renew. Sust. Energ. Rev 2012, 16 (4), 2154-2171.
6. Lu, L. G.; Han, X. B.; Li, J. Q.; Hua, J. F.; Ouyang, M. G., A review on the key issues for lithium-ion battery management in electric vehicles. J. Power Sources 2013, 226, 272-288.
7. Liu, D. W.; Cao, G. Z., Engineering nanostructured electrodes and fabrication of film electrodes for efficient lithium ion intercalation. Energ. Environ. Sci. 2010, 3 (9), 1218-1237.
8. Bhatt, M. D.; O'Dwyer, C., Recent progress in theoretical and computational investigations of Li-ion battery materials and electrolytes. Phys. Chem. Chem. Phys. 2015, 17 (7), 4799-844.
9. Tarascon, J. M.; Armand, M., Issues and challenges facing rechargeable lithium batteries. Nature 2001, 414 (6861), 359-67.
10. Winter, M.; Barnett, B.; Xu, K., Before Li Ion Batteries. Chem. Rev. 2018, 118 (23), 11433-11456.
11. Blomgren, G. E., The Development and Future of Lithium Ion Batteries. J. Electrochem. Soc. 2016, 164 (1), A5019-A5025.
12. Goodenough, J. B.; Park, K. S., The Li-ion rechargeable battery: a perspective. J. Am. Chem. Soc. 2013, 135 (4), 1167-76.
13. Peled, E.; Menkin, S., Review—SEI: Past, Present and Future. J. Electrochem. Soc. 2017, 164 (7), A1703-A1719.
14. Electrolytes for Lithium and Lithium-Ion Batteries. Springer-Verlag New York, 2014; Vol. 58, p XVIII, 476.
15. Goodenough, J. B.; Kim, Y., Challenges for rechargeable batteries. J. Power Sources 2011, 196 (16), 6688-6694.
16. Writer, B., Lithium-Ion Batteries. Springer: Heidelberg, Germany, 2019.
17. Korthauer, R., Lithium-Ion Batteries Basics and Applications. Springer Berlin Heidelberg, Book 2018.
18. Winter, M.; Besenhard, J. O.; Spahr, M. E.; Novak, P., Insertion electrode materials for rechargeable lithium batteries. Adv. Mater. 1998, 10 (10), 725-763.
19. Besenhard, J. O.; Yang, J.; Winter, M., Will advanced lithium-alloy anodes have a chance in lithium-ion batteries? J. Power Sources 1997, 68 (1), 87-90.
20. Zanini, M.; Basu, S.; Fischer, J. E., Alternate synthesis and reflectivity spectrum of stage 1 lithium—graphite intercalation compound. Carbon 1978, 16 (3), 211-212.
21. Casimir, A.; Zhang, H. G.; Ogoke, O.; Amine, J. C.; Lu, J.; Wu, G., Silicon-based anodes for lithium-ion batteries: Effectiveness of materials synthesis and electrode preparation. Nano Energy 2016, 27, 359-376.
22. Ozanam, F.; Rosso, M., Silicon as anode material for Li-ion batteries. Mater. Sci. Eng., B 2016, 213, 2-11.
23. Sakabe, J.; Ohta, N.; Ohnishi, T.; Mitsuishi, K.; Takada, K., Porous amorphous silicon film anodes for high-capacity and stable all-solid-state lithium batteries. Commun. Chem. 2018, 1 (1), 24.
24. Cheng, X. B.; Zhang, R.; Zhao, C. Z.; Zhang, Q., Toward Safe Lithium Metal Anode in Rechargeable Batteries: A Review. Chem. Rev. 2017, 117 (15), 10403-10473.
25. Albertus, P.; Babinec, S.; Litzelman, S.; Newman, A., Status and challenges in enabling the lithium metal electrode for high-energy and low-cost rechargeable batteries. Nat. Energy. 2017, 3 (1), 16-21.
26. Camacho-Forero, L. E.; Smith, T. W.; Balbuena, P. B., Effects of High and Low Salt Concentration in Electrolytes at Lithium–Metal Anode Surfaces. J. Phys. Chem. C 2016, 121 (1), 182-194.
27. Lin, D.; Liu, Y.; Cui, Y., Reviving the lithium metal anode for high-energy batteries. Nat. Nanotechnol. 2017, 12 (3), 194-206.
28. Zheng, J. M.; Engelhard, M. H.; Mei, D. H.; Jiao, S. H.; Polzin, B. J.; Zhang, J. G.; Xu, W., Electrolyte additive enabled fast charging and stable cycling lithium metal batteries. Nat. Energy. 2017, 2 (3).
29. Ding, F.; Xu, W.; Graff, G. L.; Zhang, J.; Sushko, M. L.; Chen, X.; Shao, Y.; Engelhard, M. H.; Nie, Z.; Xiao, J.; Liu, X.; Sushko, P. V.; Liu, J.; Zhang, J. G., Dendrite-free lithium deposition via self-healing electrostatic shield mechanism. J. Am. Chem. Soc. 2013, 135 (11), 4450-6.
30. Qian, J.; Henderson, W. A.; Xu, W.; Bhattacharya, P.; Engelhard, M.; Borodin, O.; Zhang, J. G., High rate and stable cycling of lithium metal anode. Nat Commun 2015, 6, 6362.
31. Li, W.; Yao, H.; Yan, K.; Zheng, G.; Liang, Z.; Chiang, Y. M.; Cui, Y., The synergetic effect of lithium polysulfide and lithium nitrate to prevent lithium dendrite growth. Nat Commun 2015, 6, 7436.
32. Cheng, X. B.; Zhang, R.; Zhao, C. Z.; Zhang, Q., Toward Safe Lithium Metal Anode in Rechargeable Batteries: A Review. Chem. Rev. 2017, 117 (15), 10403-10473.
33. Goriparti, S.; Miele, E.; De Angelis, F.; Di Fabrizio, E.; Zaccaria, R. P.; Capiglia, C., Review on recent progress of nanostructured anode materials for Li-ion batteries. J. Power Sources 2014, 257, 421-443.
34. Yang, J.; Zhou, X. Y.; Li, J.; Zou, Y. L.; Tang, J. J., Study of nano-porous hard carbons as anode materials for lithium ion batteries. Mater. Chem. Phys. 2012, 135 (2-3), 445-450.
35. Fujimoto, H.; Tokumitsu, K.; Mabuchi, A.; Chinnasamy, N.; Kasuh, T., The anode performance of the hard carbon for the lithium ion battery derived from the oxygen-containing aromatic precursors. J. Power Sources 2010, 195 (21), 7452-7456.
36. Bridges, C. A.; Sun, X. G.; Zhao, J. K.; Paranthaman, M. P.; Dai, S., In Situ Observation of Solid Electrolyte Interphase Formation in Ordered Mesoporous Hard Carbon by Small-Angle Neutron Scattering. J Phys. Chem. C 2012, 116 (14), 7701-7711.
37. Stern, P. C.; Sovacool, B. K.; Dietz, T., Towards a science of climate and energy choices. Nat. Clim. Chang. 2016, 6 (6), 547-555.
38. Nishidate, K.; Hasegawa, M., Energetics of lithium ion adsorption on defective carbon nanotubes. Phys.Rev. B 2005, 71 (24).
39. K. Nishidate, M. H., First-Principles Study of Li-Intercalated Carbon Nanotube Ropes. Phys. Rev 1999, 85.
40. Meunier, V.; Kephart, J.; Roland, C.; Bernholc, J., Ab initio investigations of lithium diffusion in carbon nanotube systems. Phys. Rev. Lett. 2002, 88 (7), 075506.
41. Hou, J.; Shao, Y.; Ellis, M. W.; Moore, R. B.; Yi, B., Graphene-based electrochemical energy conversion and storage: fuel cells, supercapacitors and lithium ion batteries. Phys. Chem. Chem. Phys. 2011, 13 (34), 15384-402.
42. Chen, Z. H.; Belharouak, I.; Sun, Y. K.; Amine, K., Titanium-Based Anode Materials for Safe Lithium-Ion Batteries. Adv. Funct. Mater. 2013, 23 (8), 959-969.
43. Szczech, J. R.; Jin, S., Nanostructured silicon for high capacity lithium battery anodes. Energ. Environ. Sci. 2011, 4 (1), 56-72.
44. Park, C. M.; Kim, J. H.; Kim, H.; Sohn, H. J., Li-alloy based anode materials for Li secondary batteries. Chem. Soc. Rev. 2010, 39 (8), 3115-41.
45. Rudawski, N. G.; Yates, B. R.; Holzworth, M. R.; Jones, K. S.; Elliman, R. G.; Volinsky, A. A., Ion beam-mixed Ge electrodes for high capacity Li rechargeable batteries. J. Power Sources 2013, 223, 336-340.
46. Chockla, A. M.; Klavetter, K. C.; Mullins, C. B.; Korgel, B. A., Solution-grown germanium nanowire anodes for lithium-ion batteries. ACS Appl. Mater. Interfaces 2012, 4 (9), 4658-64.
47. Bruce, P. G.; Scrosati, B.; Tarascon, J. M., Nanomaterials for rechargeable lithium batteries. Angew. Chem. Int. Ed. Engl. 2008, 47 (16), 2930-46.
48. Wang, Z.; Zhou, L.; Lou, X. W., Metal oxide hollow nanostructures for lithium-ion batteries. Adv. Mater. 2012, 24 (14), 1903-11.
49. J. Yang a, Y. Takeda a, N. Imanishi a, C. Capiglia a, J.Y. Xie b, O. Yamamoto c, SiOx-based anodes for secondary lithium batteries. Solid State Ion. 2002.
50. Xu, W.; Wang, J. L.; Ding, F.; Chen, X. L.; Nasybutin, E.; Zhang, Y. H.; Zhang, J. G., Lithium metal anodes for rechargeable batteries. Energ. Environ. Sci. 2014, 7 (2), 513-537.
51. Dornbusch, D. A.; Hilton, R.; Lohman, S. D.; Suppes, G. J., Experimental Validation of the Elimination of Dendrite Short-Circuit Failure in Secondary Lithium-Metal Convection Cell Batteries. J. Electrochem. Soc. 2014, 162 (3), A262-A268.
52. Aurbach, D., A short review of failure mechanisms of lithium metal and lithiated graphite anodes in liquid electrolyte solutions. Solid State Ion. 2002, 148 (3-4), 405-416.
53. Selim, R.; Bro, P., Some Observations on Rechargeable Lithium Electrodes in a Propylene Carbonate Electrolyte. J. Electrochem. Soc. 1974, 121 (11), 1457-1459.
54. Steiger, J.; Kramer, D.; Moenig, R., Microscopic observations of the formation, growth and shrinkage of lithium moss during electrodeposition and dissolution. Electrochim. Acta 2014, 136, 529-536.
55. Korthauer, R., Lithium-Ion Batteries: Basics and Applications. Germany, 2018; p XX, 413.
56. Ji-Guang Zhang, W. X., Wesley A. Henderson, Lithium Metal Anodes and Rechargeable Lithium Metal Batteries. Springer International Publishing: Switzerland, 2017; Vol. 249, p XV, 194.
57. Xu, B.; Qian, D. N.; Wang, Z. Y.; Meng, Y. S. L., Recent progress in cathode materials research for advanced lithium ion batteries. Mater. Sci. Eng. R Rep. 2012, 73 (5-6), 51-65.
58. Xu, K., Electrolytes and interphases in Li-ion batteries and beyond. Chem. Rev. 2014, 114 (23), 11503-618.
59. Borodin, O.; Behl, W.; Jow, T. R., Oxidative Stability and Initial Decomposition Reactions of Carbonate, Sulfone, and Alkyl Phosphate-Based Electrolytes. J Phys. Chem. C 2013, 117 (17), 8661-8682.
60. Xu, K., Nonaqueous liquid electrolytes for lithium-based rechargeable batteries. Chem. Rev. 2004, 104 (10), 4303-417.
61. Ravdel, B.; Abraham, K. M.; Gitzendanner, R.; DiCarlo, J.; Lucht, B.; Campion, C., Thermal stability of lithium-ion battery electrolytes. J. Power Sources 2003, 119, 805-810.
62. Botte, G. G., R.E. White, and Z. Zhang, Thermal stability of LiPF6–EC:EMC electrolyte for lithium ion batteries. J. Power Sources 2001, 97-98, 570-570.
63. Campion, C. L.; Li, W. T.; Lucht, B. L., Thermal decomposition of LiPF6-based electrolytes for lithium-ion batteries. J. Electrochem. Soc. 2005, 152 (12), A2327-A2334.
64. Strmcnik, D.; Castelli, I. E.; Connell, J. G.; Haering, D.; Zorko, M.; Martins, P.; Lopes, P. P.; Genorio, B.; Østergaard, T.; Gasteiger, H. A.; Maglia, F.; Antonopoulos, B. K.; Stamenkovic, V. R.; Rossmeisl, J.; Markovic, N. M., Electrocatalytic transformation of HF impurity to H2 and LiF in lithium-ion batteries. Nat. Catal. 2018, 1 (4), 255-262.
65. Aurbach, D.; Gamolsky, K.; Markovsky, B.; Gofer, Y.; Schmidt, M.; Heider, U., On the use of vinylene carbonate (VC) electrolyte solutions for Li-ion as an additive to batteries. Electrochim. Acta 2002, 47 (9), 1423-1439.
66. Sloop, S. E.; Pugh, J. K.; Wang, S.; Kerr, J. B.; Kinoshita, K., Chemical Reactivity of PF5 and LiPF6 in Ethylene Carbonate/Dimethyl Carbonate Solutions. Electrochem. Solid-State Lett. 2001, 4 (4).
67. Johansson, P.; Beranger, S.; Armand, M.; Nilsson, H.; Jacobsson, P., Spectroscopic and theoretical study of the 1,2,3-Triazole-4,5-dicarbonitrile anion and its lithium ion pairs. Solid State Ion. 2003, 156 (1-2), 129-139.
68. Barbarich, T. J.; Driscoll, P. F., A lithium salt of a lewis acid-base complex of imidazolide for lithium-ion batteries. Electrochem. Solid-State Lett. 2003, 6 (6), A113-A116.
69. Preston, P. N., Synthesis, Reactions, and Spectroscopic Properties of Benzimidazoles. Chem. Rev. 1974, 74 (3), 279-314.
70. Scheers, J.; Johansson, P.; Szczecinski, P.; Wieczorek, W.; Armand, M.; Jacobsson, P., Benzimidazole and imidazole lithium salts for battery electrolytes. J. Power Sources 2010, 195 (18), 6081-6087.
71. Niedzicki, L.; Oledzki, P.; Bitner, A.; Bukowska, M.; Szczecinski, P., Benzimidazole-derived anion for lithium-conducting electrolytes. J. Power Sources 2016, 306, 573-577.
72. Sriana, T.; Leggesse, E. G.; Jiang, J. C., Novel benzimidazole salts for lithium ion battery electrolytes: effects of substituents. Phys. Chem. Chem. Phys. 2015, 17 (25), 16462-8.
73. Teshager, M. A.; Hwang, B.-J.; Chern, Y.-T.; Lin, S. D., Cathode Stability Provided by New Electrolyte containing Cyano-benzimidazole-based Lithium Salt: Insights From In Situ DRIFTS Analysis. Chem. Electro. Chem. 2017, 4 (1), 201-208.
74. Besenhard, J. O.; Winter, M.; Yang, J.; Biberacher, W., Filming Mechanism of Lithium-Carbon Anodes in Organic and Inorganic Electrolytes. J. Power Sources 1995, 54 (2), 228-231.
75. Chung, G. C.; Kim, H. J.; Yu, S. I.; Jun, S. H.; Choi, J. W.; Kim, M. H., Origin of graphite exfoliation - An investigation of the important role of solvent cointercalation. J. Electrochem. Soc. 2000, 147 (12), 4391-4398.
76. Wang, A. P.; Kadam, S.; Li, H.; Shi, S. Q.; Qi, Y., Review on modeling of the anode solid electrolyte interphase (SEI) for lithium-ion batteries. Npj Comput. Mater. 2018, 4 (1).
77. Peled, E., The Electrochemical Behavior of Alkali and Alkaline Earth Metals in Nonaqueous Battery Systems-The Solid Electrolyte Interphase Model. J. Electrochem. Soc. 1979, 126, 2047.
78. Winter, M., The Solid Electrolyte Interphase – The Most Important and the Least Understood Solid Electrolyte in Rechargeable Li Batteries. Z. Phys. Chem. 2009, 223, 1395-1406.
79. Xu, K., Electrolytes and Interphasial Chemistry in Li Ion Devices. Energies 2010, 3 (1), 135-154.
80. Xu, K.; von Cresce, A.; Lee, U., Differentiating contributions to "ion transfer" barrier from interphasial resistance and Li+ desolvation at electrolyte/graphite interface. Langmuir 2010, 26 (13), 11538-43.
81. Verma, P.; Maire, P.; Novak, P., A review of the features and analyses of the solid electrolyte interphase in Li-ion batteries. Electrochim. Acta 2010, 55 (22), 6332-6341.
82. Eshkenazi, V.; Peled, E.; Burstein, L.; Golodnitsky, D., XPS analysis of the SEI formed on carbonaceous materials. Solid State Ion. 2004, 170 (1-2), 83-91.
83. Zhuang, G. R.; Wang, K. L.; Ross, P. N., XPS characterization of the reactions of Li with tetrahydrofuran and propylene carbonate. Surf Sci. 1997, 387 (1-3), 199-212.
84. Kanamura, K.; Tomura, H.; Shiraishi, S.; Takehara, Z. I., Xps Analysis of Lithium Surfaces Following Immersion in Various Solvents Containing Libf4. J. Electrochem. Soc. 1995, 142 (2), 340-347.
85. Hackerman, N., Energy Storage Systems for Electronics. New Trends in Electrochemical Technology Edited by Tetsuya Osaka (Waseda University) and Madhav Datta (Intel Corporation). Gordon and Breach Science Publishers: Amsterdam. 2000. xxiv + 580 pp. $145. ISBN 90-5699-176-0. J. Am. Chem. Soc. 2001, 123 (4), 782-782.
86. Aurbach, D., Review of selected electrode-solution interactions which determine the performance of Li and Li ion batteries. J. Power Sources 2000, 89 (2), 206-218.
87. Wagner, M. R.; Albering, J. H.; Moeller, K. C.; Besenhard, J. O.; Winter, M., XRD evidence for the electrochemical formation of Li+(PC)yCn- in PC-based electrolytes. Electrochem. Commun. 2005, 7 (9), 947-952.
88. Baddour-Hadjean, R.; Pereira-Ramos, J. P.; Latroche, M.; Percheron-Guégan, A., In situ X-ray diffraction study on MmNi3.85Mn0.27Al0.37Co0.38 as negative electrode in alkaline secondary batteries. Electrochim. Acta 2003, 48 (19), 2813-2821.
89. Stallworth, P. E.; Fontanella, J. J.; Wintersgill, M. C.; Scheidler, C. D.; Immel, J. J.; Greenbaum, S. G.; Gozdz, A. S., NMR, DSC and high pressure electrical conductivity studies of liquid and hybrid electrolytes. J. Power Sources 1999, 81, 739-747.
90. D. Aurbach, Y. E.-E., B. Markovsky, A. Zaban, S. Luski, Y. Carmeli, H. Yamin, The Study of Electrolyte Solutions Based on Ethylene and Diethyl Carbonates for Rechargeable Li Batteries. J. Electrochem. Soc. 1995, 142, 2882-2890.
91. Wang, Y.; Nakamura, S.; Ue, M.; Balbuena, P. B., Theoretical studies to understand surface chemistry on carbon anodes for lithium-ion batteries: reduction mechanisms of ethylene carbonate. J. Am. Chem. Soc. 2001, 123 (47), 11708-18.
92. Xu, K.; Lam, Y. F.; Zhang, S. S.; Jow, T. R.; Curtis, T. B., Solvation sheath of Li+ in nonaqueous electrolytes and its implication of graphite/electrolyte interface chemistry. J Phys. Chem. C 2007, 111 (20), 7411-7421.
93. Lin, Y. X.; Liu, Z.; Leung, K.; Chen, L. Q.; Lu, P.; Qi, Y., Connecting the irreversible capacity loss in Li-ion batteries with the electronic insulating properties of solid electrolyte interphase (SEI) components. J. Power Sources 2016, 309, 221-230.
94. Benitez, L.; Cristancho, D.; Seminario, J. M.; de la Hoz, J. M. M.; Balbuena, P. B., Electron transfer through solid-electrolyte-interphase layers formed on Si anodes of Li-ion batteries. Electrochim. Acta 2014, 140, 250-257.
95. Benitez, L.; Seminario, J. M., Ion Diffusivity through the Solid Electrolyte Interphase in Lithium-Ion Batteries. J. Electrochem. Soc. 2017, 164 (11), E3159-E3170.
96. Chen, Y. C.; Ouyang, C. Y.; Song, L. J.; Sun, Z. L., Electrical and Lithium Ion Dynamics in Three Main Components of Solid Electrolyte Interphase from Density Functional Theory Study. J Phys. Chem. C 2011, 115 (14), 7044-7049.
97. Shin, H.; Park, J.; Han, S.; Sastry, A. M.; Lu, W., Component-/structure-dependent elasticity of solid electrolyte interphase layer in Li-ion batteries: Experimental and computational studies. J. Power Sources 2015, 277, 169-179.
98. Tasaki, K.; Harris, S. J., Computational Study on the Solubility of Lithium Salts Formed on Lithium Ion Battery Negative Electrode in Organic Solvents. J Phys. Chem. C 2010, 114 (17), 8076-8083.
99. Becke, A. D., Density‐functional thermochemistry. III. The role of exact exchange. J. Chem. Phys. 1993, 98 (7), 5648-5652.
100. Lee, C.; Yang, W.; Parr, R. G., Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys. Rev. B: Condens. Matter Mater. Phys. 1988, 37 (2), 785-789.
101. Stephens, P. J.; Devlin, F. J.; Chabalowski, C. F.; Frisch, M. J., Ab-Initio Calculation of Vibrational Absorption and Circular-Dichroism Spectra Using Density-Functional Force-Fields. J. Phys. Chem. 1994, 98 (45), 11623-11627.
102. Clark, T.; Chandrasekhar, J.; Spitznagel, G. W.; Schleyer, P. V., Efficient Diffuse Function-Augmented Basis Sets for Anion Calculations. Iii. The 3-21+G Basis Set for First-Row Elements, Li-F. J. Comput. Chem. 1983, 4 (3), 294-301.
103. Frisch, M. J.; Pople, J. A.; Binkley, J. S., Self‐consistent molecular orbital methods 25. Supplementary functions for Gaussian basis sets. J. Chem. Phys. 1984, 80 (7), 3265-3269.
104. Reed, A. E.; Weinstock, R. B.; Weinhold, F., Natural-Population Analysis. J. Chem. Phys. 1985, 83 (2), 735-746.
105. Marenich, A. V.; Cramer, C. J.; Truhlar, D. G., Universal solvation model based on solute electron density and on a continuum model of the solvent defined by the bulk dielectric constant and atomic surface tensions. J. Phys. Chem. B 2009, 113 (18), 6378-96.
106. M. J. Frisch, G. W. T., H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, T. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski and D. J. Fox, Gaussian 09, Revision D.01, Gaussian Inc., Wallingford, CT,. 2013.
107. Kresse, G.; Hafner, J., Ab initio molecular-dynamics simulation of the liquid-metal–amorphous-semiconductor transition in germanium. Phys. Rev. B 1994, 49 (20), 14251.
108. Blochl, P. E., Projector Augmented-Wave Method. Phys.Rev. B 1994, 50 (24), 17953-17979.
109. Perdew, J. P.; Burke, K.; Ernzerhof, M., Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77 (18), 3865-3868.
110. Nose, S., A Unified Formulation of the Constant Temperature Molecular-Dynamics Methods. J. Chem. Phys. 1984, 81 (1), 511-519.
111. Hoover, W. G., Canonical dynamics: Equilibrium phase-space distributions. Phys. Rev. A 1985, 31 (3), 1695-1697.
112. Henkelman, G.; Arnaldsson, A.; Jónsson, H., A fast and robust algorithm for Bader decomposition of charge density. Comp. Mater. Sci. 2006, 36 (3), 354-360.
113. Tang, W.; Sanville, E.; Henkelman, G., A grid-based Bader analysis algorithm without lattice bias. J. Phys.: Condens. Matter 2009, 21 (8), 084204.
114. Sanville, E.; Kenny, S. D.; Smith, R.; Henkelman, G., Improved grid-based algorithm for Bader charge allocation. J. Comput. Chem. 2007, 28 (5), 899-908.
115. Bader, R. F. W., Atoms in molecules. Acc. Chem. Res. 2002, 18 (1), 9-15.
116. Aurbach, D.; Markovsky, B.; Shechter, A.; EinEli, Y.; Cohen, H., A comparative study of synthetic graphite and Li electrodes in electrolyte solutions based on ethylene carbonate dimethyl carbonate mixtures. J. Electrochem. Soc. 1996, 143 (12), 3809-3820.
117. Tasaki, K.; Kanda, K.; Nakamura, S.; Ue, M., Decomposition of LiPF6 and stability of PF5 in Li-ion battery electrolytes - Density functional theory and molecular dynamics studies. J. Electrochem. Soc. 2003, 150 (12), A1628-A1636.
118. Camacho-Forero, L. E.; Smith, T. W.; Bertolini, S.; Balbuena, P. B., Reactivity at the Lithium–Metal Anode Surface of Lithium–Sulfur Batteries. J. Phys. Chem. C 2015, 119 (48), 26828-26839.
119. Gomez-Ballesteros, J. L.; Balbuena, P. B., Reduction of Electrolyte Components on a Coated Si Anode of Lithium-Ion Batteries. J. Phys. Chem. Lett. 2017, 8 (14), 3404-3408.
120. Martinez de la Hoz, J. M.; Soto, F. A.; Balbuena, P. B., Effect of the Electrolyte Composition on SEI Reactions at Si Anodes of Li-Ion Batteries. J. Phys. Chem. C 2015, 119 (13), 7060-7068.
121. Leung, K., Two-electron reduction of ethylene carbonate: A quantum chemistry re-examination of mechanisms. Chem. Phys. Lett. 2013, 568, 1-8.
122. Young, J.; Smeu, M., Ethylene Carbonate-Based Electrolyte Decomposition and Solid-Electrolyte Interphase Formation on Ca Metal Anodes. J. Phys. Chem. Lett. 2018, 9 (12), 3295-3300.
123. Ebadi, M.; Brandell, D.; Araujo, C. M., Electrolyte decomposition on Li-metal surfaces from first-principles theory. J. Chem. Phys. 2016, 145 (20), 204701.
124. Leung, K.; Budzien, J. L., Ab initio molecular dynamics simulations of the initial stages of solid-electrolyte interphase formation on lithium ion battery graphitic anodes. Phys. Chem. Chem. Phys. 2010, 12 (25), 6583-6.
125. M. Onuki, S. K., Y. Sakata, M. Yanagidate, Y. Otake, M. Ue ,M. Deguchi, Identification of the Source of Evolved Gas in Li-ion Batteries by Using 13C-labeled Solvents. Electrochem. Soc 2008, 155, A794.
126. Ellis, L. D.; Hill, I. G.; Gering, K. L.; Dahn, J. R., Synergistic Effect of LiPF6and LiBF4as Electrolyte Salts in Lithium-Ion Cells. J. Electrochem. Soc. 2017, 164 (12), A2426-A2433.
127. Beyene, T. T.; Bezabh, H. K.; Weret, M. A.; Hagos, T. M.; Huang, C.-J.; Wang, C.-H.; Su, W.-N.; Dai, H.; Hwang, B.-J., Concentrated Dual-Salt Electrolyte to Stabilize Li Metal and Increase Cycle Life of Anode Free Li-Metal Batteries. J. Electrochem. Soc. 2019, 166 (8), A1501-A1509.
128. Miao, R.; Yang, J.; Feng, X.; Jia, H.; Wang, J.; Nuli, Y., Novel dual-salts electrolyte solution for dendrite-free lithium-metal based rechargeable batteries with high cycle reversibility. J. Power Sources 2014, 271, 291-297.
129. Nandasiri, M. I.; Camacho-Forero, L. E.; Schwarz, A. M.; Shutthanandan, V.; Thevuthasan, S.; Balbuena, P. B.; Mueller, K. T.; Murugesan, V., In Situ Chemical Imaging of Solid-Electrolyte Interphase Layer Evolution in Li–S Batteries. Chem. Mater. 2017, 29 (11), 4728-4737.
130. Bryantsev, V. S.; Faglioni, F., Predicting autoxidation stability of ether- and amide-based electrolyte solvents for Li-air batteries. J. Phys. Chem. A 2012, 116 (26), 7128-38.
131. Wu, F.; Thieme, S.; Ramanujapuram, A.; Zhao, E.; Weller, C.; Althues, H.; Kaskel, S.; Borodin, O.; Yushin, G., Toward in-situ protected sulfur cathodes by using lithium bromide and pre-charge. Nano Energy 2017, 40, 170-179.
132. Camacho-Forero, L. E.; Balbuena, P. B., Elucidating electrolyte decomposition under electron-rich environments at the lithium-metal anode. Phys. Chem. Chem. Phys. 2017, 19 (45), 30861-30873.
133. Kuwata, N.; Lu, X.; Miyazaki, T.; Iwai, Y.; Tanabe, T.; Kawamura, J., Lithium diffusion coefficient in amorphous lithium phosphate thin films measured by secondary ion mass spectroscopy with isotope exchange methods. Solid State Ion. 2016, 294, 59-66.

無法下載圖示 全文公開日期 2024/08/15 (校內網路)
全文公開日期 2024/08/15 (校外網路)
全文公開日期 2024/08/15 (國家圖書館:臺灣博碩士論文系統)
QR CODE