簡易檢索 / 詳目顯示

研究生: 黃崑瑭
Kun-Tang Huang
論文名稱: 以聲-光非破壞檢測判識隧道襯砌受熱-固傷損之力學行為
Mechanical Behavior of Brittle Solid in Tunnel Lining Coupling Thermal- and Load-induced Damage Associated with Acousto-optic Nondestructive Techniques
指導教授: 陳堯中
Yao-Chung Chen
口試委員: 黃兆龍
Chao-Lung Hwang
王天志
Wang Tien-Chih
陳立憲
Li-Hsien Chen
學位類別: 碩士
Master
系所名稱: 工程學院 - 營建工程系
Department of Civil and Construction Engineering
論文出版年: 2017
畢業學年度: 105
語文別: 中文
論文頁數: 227
中文關鍵詞: 水泥基質材料熱-固耦合傷損超音波脈衝聲射法電子斑紋干涉術
外文關鍵詞: Cement-based material, Thermal- and load-induced damage, Ultrasonic pulse (UP), Acoustic emission (AE), Electronic speckle pattern interferometry (ESPI)
相關次數: 點閱:273下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 為研析隧道結構 (如襯砌結構) 受溫度 (如火害、地熱及其他溫差效應) 與應力 (大地、工作應力) 同時作用後,其結構材料力學行為,因此,本研究應用主、被動式聲-光非破壞探傷技術,研析巨觀殘餘力學性能佐以微觀破壞演化之觀察,俾能作為實驗室及現場之傷損判識工具/方法。本研究針對首當其衝受熱損之二次襯砌,探討襯砌受溫度與壓應力作用之環境作為研究對象,以混凝土設計強度420 kgf/cm2、最高溫度 (25 ~ 600 ℃) 及工作應力比 (0 ~ 0.45) 作為試驗控制變數,並以控制升溫速率10 ℃/min、初始持溫時間與室溫冷卻為試驗控制常數進行研討。前述之初始持溫時間以單向度暫態熱傳理論進行推估,完成已知熱損環境之模擬前後,執行以環狀位移計作為控制訊號的單壓試驗,求得固材之真實峰後加載歷程,計算固材之三項巨觀力學參數:勁度 (E)、強度 (qu)、韌度 (T) 之折減率,同時結合於材料外部設置之同步化判識技術-聲學微震量測技術及光學面內位移量測系統,藉以量測材料內部之微觀裂縫時間分佈和材料外部之巨觀表面裂縫生衍,觀察固材之另三項微觀破壞特徵之演化:叢聚、初裂、裂衍;最後,試驗後量測之巨-微尺度力學性能與其熱損溫度歷程結果與試驗前整合之聲學的超音波脈衝量測之「剪-壓波速比 (VS/VP)」作相互對應。由試驗成果顯示,使用單向度暫態熱傳導理論簡化模擬混凝土的受溫歷程,得知實驗與理論初始時間差異性小於7 %,並以COMSOL有限元素程式驗證理論之正確性;巨觀力學部分,對照組為無工作應力狀態,於低溫段 (< 530 ℃) 之工作應力作用下其殘餘勁、強分別可提升15 ~ 60 %,於高溫段( 600 ℃) 0.45的工作應力作用,反而傷損6 %之殘餘勁、強度;於微觀特徵部分,因工作應力作用使峰前之聲射事件累積大量減少;於剪-壓波速比反應部分,於低溫階段 ( < 530 ℃) 之工作應力比作用下,其剪-壓波速比變化由0.68至0.64,與工作應力為零條件之0.68至0.71呈現相反之趨勢,相關成果應可作為災前之防火性能設計及災後的現場傷損判識之參佐。


    For investigating mechanical behaviors of tunnel structure (like tunnel lining) is subjected to a coupling of temperature (such as fire, geothermal, and the other thermal gradient) and stress (geostress and working stress) treatment. This study was focusing on the investigation of macroscopical residual mechanical behavior and microscopical fracture evolution utilizing acousto-optical nondestructive technique. The acoustical nondestructive technique is also divided by active and inactive means which is like supersonic and acoustic emission method, respectively. The measurein laboratory and in-situ emplying nondestructive techaniques are eager to obtain the macro- and microscopical results for judging the damage severity of material.This research paid attention on the linking material such as concrete (fc’ = 420 kgf/cm2) that due to serious fire-induced damage, by applying the uniaxial compressive stress (working stress ratio = 0 ~ 0.4) and complete thermo history (maximum temp. = 25 ~ 600 ℃) in the same time to simulate the critical failure of tunnel lining, with constant the rate of heating (10 ℃/min), exposure time that calculated by one dimensional heat transfer equation (8 min), and way of cooling (cooling in air). The macro-scale mechanical parameters and complete loading history were obtained from compressive test which using lateral displacement as a feedback signal, during the compressive test, associated with synchronized acousto-optic nonintrusive technique (AE & ESPI) to investigate the 3 types of macro-scale mechanical parameters (Stiffness, Strength and Tougness) and 3 types of micro-scale failure evolution (Localization, Crack initiation and propagation). Build up the relationship of macro and micro-scale mechanical parameters and ‘‘velocity ratio, VS/VP’’ which obtained from ultrasonic pulse (UP).Based on the result of measurement temp. inside concrete, the one dimensional heat transfer equation could simplify the temp. history for obtaining the intial exposure time. In macro-scale, the stiffness and strength of specimens stressed in compression during heating (< 530 ℃) were geneally 15 to 60 % higher than those of companion spcimens which were not stressd during heating, but the specimens which stress in working stress ratio 0.45 and max temp. 600 ℃ were decreased 6 % of stiffness and strength. In micro-scale, as the working stress ratio increase, AE events before the peak load were decreased .In velocity ratio, the working stress was obvious effect in max temp. 400 ~ 530 ℃ and displaced the reverse trend compared with non-working stress condition.

    摘要 I ABSTRACT III 目錄 V 表目錄 IX 圖目錄 XI 符號對照表 XXI 第一章 緒論 1 1.1 研究動機 1 1.2 研究目的 3 1.3 研究範圍與方法 2 1.4 研究架構與流程 3 第二章 文獻回顧 5 2.1 擬脆性固材之破壞機制 7 2.2 水泥基質材受溫度作用之性質探討 8 2.1.1 水泥基質材受熱之熱學性質 8 2.1.2 水泥基質材受熱之孔隙變化 13 2.1.3 水泥基質材受熱之重量變化 14 2.3 水泥基質材受熱力破壞之力學反應 15 2.4 水泥基質材受熱-固耦合破壞之力學反應 21 2.5 國內熱驅破壞沿革 27 2.6 耐火規範及火害試驗之時間/溫度曲線(Time /Temperature Curve) 30 2.7 固力破壞試驗-單軸壓縮試驗 35 2.7.1 單軸壓縮試驗之完整應力-應變曲線 35 2.7.2 單軸壓縮試驗之影響因子 41 2.8 主動式超音波脈衝量測技術 46 2.8.1 基本波傳理論 46 2.8.2 超音波脈衝檢測技術 52 2.9 被動式聲射量測技術 53 2.10 電子斑紋干涉術 57 第三章 試驗架構 61 3.1 試驗材料 61 3.2 破壞試驗儀設 64 3.2.1 熱-固耦合模擬試驗 64 3.2.2 混凝土之單壓破壞試驗 66 3.3 非破壞檢測儀設 67 3.3.1. 超音波脈衝量測儀 67 3.3.2. 聲射訊號擷取及分析系統 70 3.3.3. 電子斑紋干涉術量測元件及分析軟體 71 3.4 破壞與非破壞試驗校正 76 3.4.1 MTS伺服器加載系統 76 3.4.2. 超音波脈衝 81 3.4.3 聲射量測系統 83 3.4.4 光學量測系統 84 3.5 熱傳理論解析與模擬 85 3.5.1 理論解析 85 3.5.2 實驗與理論之分析流程 91 3.6 試驗變數規劃 95 3.7 試驗的方法與流程 97 第四章 試驗成果與分析 103 4.1 試驗參數說明 103 4.1.1 巨觀力學參數 103 4.1.2 微觀破壞特徵 104 4.1.3 超音波波速 105 4.2 混凝土受熱驅作用之內部溫度分佈與理論、數值解析 107 4.2.1 溫度監測試驗成果分析 107 4.2.2 單向度熱傳理論解析與實驗比對成果 111 4.2.3 單向度熱傳數值模擬與理論解析分析成果 116 4.3 混凝土受熱-固耦合作用前、後之巨觀力學行為 119 4.4 混凝土受熱-固耦合作用前、後之微觀破壞特徵 132 4.4.1 微震裂源之時間演化與空間分佈 132 4.4.2 光學干涉之影像量測成果 135 4.5 混凝土受熱-固耦合作用前、後之波速變化 146 4.5.1 熱損後混凝土之波速變化與溫度、工作應力比的關聯 146 4.5.2 熱損後混凝土之巨觀力學參數與波速的關聯 156 第五章 結論與建議 161 5.1 結論 161 5.2 建議 164 參考文獻 169 附錄一 試驗成果圖示 175 口試委員意見回覆 193

    中華民國國家標準,2014,建築物構造構件耐火試驗法-第1 部:一般要求事項,CNS 12514-1,經濟部標準檢驗局。
    中華民國國家標準,2014,混凝土圓柱試體抗壓強度檢測法,CNS 1232,經濟部標準檢驗局。
    中華民國國家標準,試驗室混凝土試體製作及養護法,CNS 1230,經濟部標準檢驗局,2005。
    內政部,營建署,編輯委員會,1993,混凝土結構設計規範,營建雜誌社。
    內政部,營建署,編輯委員會,2011,混凝土結構設計規範,營建雜誌社。
    任逸群,2012,中性化水泥砂漿工程性質及檢測方法之研究,營建工程系,碩士論文,國立台灣科技大學,台灣。
    巫奇頴,2009,同步化聲光非破壞檢測研探類岩材料於貫切破壞之群刀效應,土木工程系,碩士論文,國立臺北科技大學,台灣。
    李昶佑,2006,應用電子點紋干涉術探討岩石貫切過程之破壞演化及破裂特徵,土木工程系,碩士論文,國立台北科技大學,台灣。
    沈進發、陳舜田、沈榮村,1988,混凝土火害溫度推測方法之研究,國科會專題研究報告,編號NSC77-0410-E011-09,台灣。
    沈進發、陳舜田、涂耀賢,1991,以燒失量試驗法推測混凝土受火害程度之研究,國科會專題研究報告,編號NSC80-0410-E011-08,台灣。
    沈進發、陳舜田、張郁慧,1993,火害延時對混凝土材料性質之影響,國科會專題研究報告,編號NSC82-0410-E011-079,台灣。
    施佩文,2013,有限元素法研析擬脆材料受熱驅破壞之熱-固耦合,營建工程系,碩士論文,國立臺灣科技大學,台灣。
    柯志揚,2016,結合聲-光非破壞檢測於隧道環境遭熱驅破壞之傷損判識,營建工程系,碩士論文,國立台灣科技大學,台灣。
    張育誠,2013,連續熱損顆粒材之破裂韌度與拉力強度及其聲光破壞演化,營建工程系,碩士論文,國立臺灣科技大學,台灣。
    曹祖璟,2015,土、建工程之脆延性固材於熱力-固力耦合下之巨-微觀破壞特徵及火害度判識,土木工程系,碩士論文,國立臺北科技大學,台灣。
    莊育泰,2012,劣化RC牆生命週期耐震能力研究,營建工程系,碩士論文,國立台灣科技大學,台灣。
    黃兆龍、林仁益、王和源,火害建築物結構材料性質評估,技術學刊,1988,3.2:107-118。
    黃兆龍,1997,混凝土性質與行為,詹氏書局,台灣。
    黃國忠,2009,準脆性岩石斷裂機制的聲發射和分離元素法應用,營建工程系,博士論文,國立台灣科技大學,台灣。
    楊志強,2001,混凝土中水泥漿和顆粒骨材界面特性研究,土木工程系,碩士論文,國立交通大學,台灣。
    楊旻森,1987,壓力作用下混凝土材料火害後之力學行為,國立臺灣工業技術學院,碩士論文,台灣。
    劉峵瑋,2015,擬脆性固材於熱驅破壞之準靜、動態力學行為,營建工程系,博士論文,國立臺灣科技大學,台灣。
    Abrams, M.S., 1971. Compressive strength of concrete at temperatures to 1600 F. Temperature and concrete, 25, 33-58.
    Anderberg, Y., Thelandersson, S., 1976. Stress and deformation characteristics of concrete at high temperatures. Lund, Sweden: Lund Institute of Technology.
    Arioz, O., 2007. Effects of elevated temperatures on properties of concrete. Fire safety journal. 42.8, 516-522.
    ASTM E976-84, A., 2000. Standard Guide for Determining the Reproducibility of Acoustic Emission Sensor Response. American society for testing and materials.
    ASTM, C597., 2009. Standard test method for pulse velocity through concrete. American society for testing and materials.
    Bieniawski, Z. T., Bernede, M. J. Bernede., 1979. Suggested methods for determining the uniaxial compressive strength and deformability of rock materials: Part 1. Suggested method for determining deformability of rock materials in uniaxial compression. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts. Vol. 16. No. 2. Pergamon.
    Biot, M.A., 1956. Theory of propagation of elastic waves in a fluid‐saturated porous solid. I. Low‐frequency range. The Journal of the acoustical Society of America. 28.2, 168-178.
    Birgül, R., 2009. Hilbert transformation of waveforms to determine shear wave velocity in concrete. Cement and concrete research. 39(8), 696-700.
    Carreira, D.J., Chu K.H., 1985. Stress-strain relationship for plain concrete in compression. Journal Proceedings. Vol. 82. No. 6.
    Chen, L.H., 2001. Failure of Rock under Normal Wedge Indentation, Ph. D., Department of Civil and Mining Engineering. University of Minnesota, USA.
    Cook, N.G.W., 1965. The failure of rock. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts. Vol. 2. No. 4. Pergamon.
    Goodman, R.E., 1989. Introduction to rock mechanics. Vol. 2. New York: Wiley.
    Grosse, C., Ohtsu, M., 2008. Acoustic Emission Testing, in: Grosse, C., Ohtsu, M. (Eds.). Springer Berlin Heidelberg.
    Harmathy, T.Z., Allen, L. W. 1973. Thermal properties of selected masonry unit concretes. Journal Proceedings. Vol. 70. No. 2.
    Hudson, J.A., Steven L.C., Charles F., 1972. Soft, stiff and servo-controlled testing machines: a review with reference to rock failure. Engineering Geology. 6.3, 155-189.
    Kodur, V., 2014. Properties of concrete at elevated temperatures. ISRN Civil engineering.
    Mohamedbhai, G.T.G.,1986. Effect of exposure time and rates of heating and cooling on residual strength of heated concrete. Magazine of Concrete Research. 38.136, 151-158.
    Naus, D.J., 2006. The effect of elevated temperature on concrete materials and structures-a literature review. No. ORNL/TM-2005/553. Oak Ridge National Laboratory (ORNL).
    Nogueira, C.L., Kaspar J.W., 2008. Ultrasonic testing of damage in concrete under uniaxial compression. Materials Journal. 98.3, 265-275.
    Paterson, M.S., Wong, T.F., 2005. Experimental rock deformation-the brittle field. Springer Science & Business Media.
    Promat, 2008. Tunnel Fire Protection For Tunnel Structures & Services.
    Schneider, U., 1988. Concrete at high temperatures—a general review. Fire safety journal. 13.1, 55-68
    Shevaldykin, V.G., Andrey A.S., Vladimir N.K., 2003. Ultrasonic low-frequency short-pulse transducers with dry point contact. Development and application. International Symposium NDT-CE. Berlin.
    Shi, G., Yang, D., 2002. Determination of the elastic wave velocities in porous rocks with the change of overburden pressure and its universal significance. Science in China Series D: Earth Sciences. 45.7, 635-642.
    Tavossi, H.M., Tittmann B.R., Cohen-Tenoudji F.,1999. Ultrasonic Characterization of Cement and Concrete. Review of Progress in Quantitative Nondestructive Evaluation. Springer US, 1943-1948.
    Timoshenko, S., 1953. History of strength of materials: with a brief account of the history of theory of elasticity and theory of structures. Courier Corporation.
    Vutukuri, V.S., Lama, R.D., Saluja, S.S., 1974. Handbook on Mechanical Properties of Rocks: Testing Techniques and Results, vol. I. Series on Rock and Soil Mechanics vol. 2, No. 1. Trans Tech Publications, Clausthal, Germany, ISBN 0-87849-010-8 .
    Watstein, D., 1953. Effect of straining rate on the compressive strength and elastic properties of concrete. Journal Proceedings. Vol. 49. No. 4.
    Wawersik, W.R., Fairhurs, C., 1969. A study of brittle rock fracture in laboratory compression experiments. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts. Vol. 7. No. 5. Pergamon.

    無法下載圖示 全文公開日期 2022/08/25 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE