簡易檢索 / 詳目顯示

研究生: 簡朝璋
Chao-Chang Chien
論文名稱: 從微藻生產生質柴油
Production of Biodiesel from Microalgae
指導教授: 朱義旭
Yi-Hsu Ju
口試委員: 李振綱
Cheng-Kang Lee
周宏農
Hung-Non Chou
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2007
畢業學年度: 95
語文別: 英文
論文頁數: 69
中文關鍵詞: Chlorella vulgaris生質柴油二氧化碳油脂
外文關鍵詞: biodiesel, Chlorella vulgaris, CO2, lipid
相關次數: 點閱:172下載:5
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 二氧化碳為溫室氣體,會造成全球氣溫上升。微藻的成長需要二氧化碳。本研究探討培養微藻,並利用微藻所含的油脂來生產生質柴油。
    微藻的生長受許多因素影響,而影響最適化油脂生產的條件有:氮源濃度、二氧化碳濃度、光照強度、pH、 溫度、收集的時間和從微藻萃取油脂的方法等。
    以尿素為氮源,可得到高油脂產率。尿素濃度降低可得到較高之油脂產率。在低氮源濃度下,油脂中三酸甘油脂之含量較高。當以空氣及3.23% CO2一起通氣時, 會有最大的油脂產率。油脂產率最適化的培養溫度、 起始pH和光照強度,分別是22℃、pH 6和10000 lux。
    由於時間因素,本研究僅探討微藻生長以及產生高油脂含量之最佳條件。有關利用微藻所含油脂生產生質柴油之研究,將留給後續研究人員做探討。


    Carbon dioxide is recognized as the most responsible atmospheric pollutant for the global warming. Microalgae needs CO2 for the growing. This research aims to produce biodiesel from lipid in microalgae.
    Several growing conditions which can optimize the production of lipid such as nitrogen concentration, CO2 concentration, light intensity, pH, temperature and culture age as well as method of extracting oil from microalgae will be determined.
    High lipid production was observed with urea as the nitrogen source. Lipid production increased with the decreasing of urea concentration. Higher triacylglyceride content in the lipid was observed at low nitrogen concentration. Maximum lipid production occurred when the air was supplemented with 3.23% CO2 (0.05 VVM). Optimal culture temperature, initial pH and light intensity for lipid production were 22 oC, pH 6 and 10000 lux, respectively.
    Due to limited time available, only conditions for obtaining optimal algae growth and maximal lipid content were explored. The conversion of microalgae lipid into biodiesel will be left for future investigations.

    中文摘要••••••••••••••••••••••• ••••••••••• I Abstract••••••••••••••••••••••••• •••••••••II 致謝•••••••••••••••••••• ••••••••••••••• III Table of contents••••••••••••••••••••••••••••••IV List of figures••••••••••••••••••••••••• •••••VII List of tables••••••••••••••••••••••• ••••••••IX Notation••••••••••••••••••••••••••• •••••••XI Chapter 1 Introduction 1.1 Chlorella••••••••••••••••••••••• •••••••••1 1.2 The application of microalgae to reduce pollution•••••••••••• 2 1.3 Biodiesel••••••••••••••••••••••••••••• •••4 1.4 Production of biodiesel from microalgae••••••••••••••••• 5 1.5 Objectives•••••••••••••••••••• •• •••• •••• 6 Chapter 2 Background and Literature Survey 2.1 Temperature••••••••••••••••••••••••• ••••• 8 2.2 Carbon dioxide•••••••••••••••••••••••• •••••9 2.3 Light •••••••••••••••••• ••••••• •• • • • 11 2.4 pH •••••••••••••••••••••••••••••••••• 12 2.5 Nitrogen ••••••••••••••••••••••••••••••• 13 2.6 Extraction method•••••••••••••••••••••••• •••15 2.7 Culture age•••••••••••••••••••••••••••••• 17 Chapter 3 Materials and Methods 3.1 Materials••••••••••••••••••••••••••••••• 19 3.2 Equipments•••••••••••••••••••••••••••••••21 3.3 Microalgae and medium••••••••••••••••••••••••• 22 3.3.1 Microalgae•••••••••••••••••••••••• ••••• 22 3.3.2 Medium••••••••••••••••••••••••••••••••22 3.4 Experimental methods••••••••••••••••••••• •••• 23 3.4.1 Measurement of cell number••••••••••••••••••••••24 3.4.2 Effects of culturing condition on cell growth and its lipid content• 24 3.4.2.1 pH•••••••••••••••••• •••••••••••••• 24 3.4.2.2 Temperature••••••••• •••••••••••••••••••24 3.4.2.3 Light intensity•••••••••••••••••••••••••• 25 3.4.2.4 CO2 concentration••••••••••••••••••••••••• 25 3.4.2.5 Nitrogen source and nitrogen concentration••••••••• ••• 26 3.4.2.6 Culture age•••••••••••••••••••••••••••• 26 3.4.3 Effects of extraction method on lipid obtained••••••••• •• 27 3.4.3.1 Soxhlet extraction•••••••••••••••••••••••••27 3.4.3.2 Dry extraction•••••••••••••••••••••••••••27 3.4.4 Gas chromatography analysis••••••••••••••••••••• 29 Chapter 4 Results and Discussion 4.1 Measurement of cell number•••••••••••••••••••••••30 4.2 Temperature•••••••••••••••••••••••••••••• 31 4.3 Light intensity•••••••••••••••••••••••••••• 35 4.4 Nitrogen source and nitrogen concentration••••••••• •••• •39 4.5 Culture age•••••••••••••••••••••••••••••• 44 4.6 Extraction method•••••••••••••••••••••••••• •47 4.7 pH •••••••••••••••••••••••••••••••••• 49 4.8 Carbon dioxide •••••••••••••••••••••••••••• 52 Chapter 5 Conclusion••••••••••• •••••••••••••• ••56 References•••••••••••••• ••••• ••••••• ••••••58 作者簡介••••••••••••••••••••••••• •••••••••69

    Achitouv, E., P. Metzger, M. N. Rager and C. Largeau, C31-C34 methylated squalenes from a Bolivian strain of Botryococcus braunii, Phytochemistry , 65, 3159-3165 (2004)
    Al-Hasan, R. H., F. M. Hantash and S. S. Radwan, Enriching marine macroalgae with eicosatetraenoic (arachidonic) and eicosapentaenoic acids by chilling, Appl Microbiol biotechnol, 35, 530-535 (1991)
    Allard, B. and J. Templier, Comparison of neutral lipid profile of various trilaminar outer cell wall (TLS)-containing microalgae with emphasis on algaenan occurrence, Phytochemistry, 54, 369-380 (2000)
    Antolin, G., F. V. Tinaut, Y. Briceno, V. Castano, C. Perez and A. I. Ramirez, Optimisation of biodiesel production by sunflower oil transesterification, Bioresourse Technology, 83, 111-114 (2002)
    Becker, E.W., Microalgae biotechnology and microbiology, Cambridge University Press, 125-128 (2003)
    Bligh, E. G. and W. J. Dyer, A rapid method of total lipid extraction and purification, Can J Biochem Physiol, 37, 911-917 (1959)
    Brown, M. R., C. D. Garland, S. W. Jefrey, I. D. Jameson and J. M. Leroi, The gross and amino acid compositions of batch and semi-continuous cultures of Isochrysis sp. (clone T-Iso), Pavlova lutheri and Nannochloropsis oculata, J Appl Phycol, 5, 285-296 (1993)
    Chang, W. M., Development of a novel photobioreactor system for cultivation of microalgae, National Tsing Hua University, Master Thesis, (2005)
    Chisti, Y., Biodiesel from microalgae, Biotechnol Adv, 25, 294-306 (2007)
    Constantopoulos, G. and K. Bloch, Effect of light intensity on the lipid composition of Euglena gracilis, J Biol Chem, 242, 3538-3542 (1967)
    Dawes, C. J., C. Kovach and M. Friedlander, Exposure of Gracilaria to various environmental conditions. 2. The effect on fatty acid composition, Bot Mar, 36, 289-296 (1993)
    Dote, Y., S. Sawayama, S. Inoue, T. Minowa and S. Yokoyama, Recovery of liquid fuel from hydrocarbon-rich microalgae by thermochemical liquefaction, Fuel, 73, 1855-1857 (1994)
    Evans, C. T. and C. Ratledge, Effect of nitrogen source on lipid accumulation in oleaginous yeasts, J Gen Microbiol, 130, 1693-1704 (1984a)
    Evans, C. T. and C. Ratledge, Influence of nitrogen metabolism on lipid accumulation by Rhodosporidium toruloides CBS 14, J Gen Microbiol, 130, 1705-1710 (1984b)
    Fernandez-Reiriz M. J., A. Perez-Camacho, M. J. Ferreiro, J. Blanco, M. Planas, M. J. Campos and U. Labarta, Biomass production and variation in the biochemical profile (total protein, carbohydrates, RNA, lipids and fatty acids) of seven species of marine microalgae, Aquaculture, 83, 17-37 (1989)
    Ginzburg, B. Z., Liquid fuel (oil) from halophilic algae: a renewable source of non-polluting energy, Renewable Energy, 3, 249-252 (1993)
    Gordillo, F. J. L., M. Goutx, F. L. Figueroa and F. X. Niell, Effects of light intensity, CO2 and nitrogen supply on lipid class composition of Dunaliella viridis, J Appl Phycol, 10, 135-144 (1998)
    Halling-Sorensen, B., N. Nyholm and A. Baun, Algal toxicity tests with volatile and hazardous compounds in air-tight test flasks with CO2 enriched headspace, Chemosphere, 32, 1513-1526 (1996)
    Hirayama, S., R. Ueda and K. Sugata, Effect of hydroxyl radical on intact microalgal photosynthesis, Energy Convers Manage, 36, 685-688 (1995)
    Hogetsu, D. and S. Miyachi, Effect of oxygen on the light-enhanced dark carbon dioxide fixation in Chlorella cells, Plant Physiology, 45, 178-182 (1970)
    Horiuchi, J., I. Ohba, K. Tada, M. Kobayashi, T. Kanno and M. Kishimoto, Effective cell harvesting of the halotolerant microalga Dunaliella tertiolecta with pH Control, J Biosci Bioengin, 95, 412-415 (2003)
    Huang, Y. M. and G. L. Rorrer, Cultivation of microplantlets derived from the marine red alga Agardhiella subulata in a stirred tank photobioreactor, Biotechnol Prog, 19, 418-427 (2003)
    Hughes, E. O., P. R. Gorham and A. Zehnder, Toxicity of a unialgal culture of Microcystis aeruginosa, Can J Microbiol, 4, 225-236 (1958)
    Iwasaki, I., N. Kurano and S. Miyachi, Effects of high-CO2 stress on photosystem II in a green alga, Chlorococcum littorale, which has a tolerance to high CO2, J Photochem Photobiol, B Biol, 36, 327-332 (1996)
    Khotimchenko, S. V. and Yakovleva I. M., Lipid composition of the red alga Tichocarpus crinitus exposed to different levels of photon irradiance, Phytochemistry, 66, 73-79 (2005)
    Kurano, N.,H. Ikemoto, H. Miyashita, T. Hasegawa, H. Hata and S. Miyachi, Fixation and utilization of carbon dioxide by microalgal photosynthesis, Energy Convers Manage, 36, 689-692 (1995)
    Lang, X., A. K. Dalai, N. N. Bakhshi, M. J. Reaney and P. B. Hertz, Preparation and characterization of bio-diesels from various bio-oils, Biores Technol, 80, 53-62 (2001)
    Maeda, K., M. Owada, N. Kimura, K. Omata and I. Karube, CO2 fixation from the flue gas on coal-fired thermal power plant by microalgae, Energy Convers Manage, 36, 717-720 (1995)
    Matsunaga, T., H. Takeyama, T. Nakao and A. Yamazawa, Screening of marine microalgae for bioremediation of cadmium-polluted seawater, J Biotechnol, 70, 33-38 (1999)
    Mayo, A. W. and T. Noike, Effects of temperature and pH on the growth of heterotrophic bacteria in waste stabilization ponds, Water Res, 30, 447-455 (1996)
    Mazzuca Sobczuk, T., F. Garcia Camacho, F. Camacho Rubio, F. G. Acien Fernandez and E. Molina Grima, Carbon dioxide uptake efficiency by outdoor microalgal cultures in tubular airlift photobioreactors, Biotechnol Bioengin, 67, 465-475 (2000)
    Meeks, J. C. and R. W. Castenholz, Photosynthetic properties of the extreme thermophile Synechococcus lividus. II. Stoichiometry between oxygen evolution and carbon dioxide assimilation, J Therm Biol, 3, 19-24 (1978)
    Meseck, S. L., J. H. Alix and G. H. Wikfors, Photoperiod and light intensity effects on growth and utilization of nutrients by the aquaculture feed microalga, Tetraselmis chui (PLY429), Aquaculture, 246, 393- 404 (2005)
    Miao, X. and Q. Y. Wu, Biodiesel production from heterotrophic microalgal oil, Biores Technol, 97, 841-846 (2006)
    Milne, T. A., R. J. Evans and N. Nagle, Catalytic conversion of microalgae and vegetable oils to premium gasoline, with shape selective zeolites, Biomass, 21, 219-232 (1990)
    Minowa, T., S.Y. Yokoyama, M. Kishimoto and T. Okakurat, Oil production from algal cells of Dunaliella tertiolecta by direct thermochemical liquefaction, Fuel, 74, 1735-1738 (1995)
    Nagase, H., K. Yoshihara, K. Eguchi, Y. Okamoto, S. Murasaki, R. Yamashita, K. Hirata and K. Miyamoto, Uptake pathway and continuous removal of nitric oxide from flue gas using microalgae, Biochem Engin J, 7, 241-246 (2001)
    Nishikawa, N., A. Hirano, Y. Ikuta, Y. Fukuda, M. Kaneko, T. Kinoshita and Y. Ogushi, Photosynthetic efficiency improvement by microalgae cultivation in tubular-type reactor, Energy Convers Manage, 36, 681-684 (1995)
    Novakovic, G. V., Y. Kim, X. Wu, I. Berzin and J. C. Merchuk, Air-lift bioreactors for algal growth on flue gas: Mathematical modeling and pilot-plant studies, Ind Eng Chem Res, 44, 6154-6163 (2005)
    Renaud, S. M., L. V. Thinh and D. L. Perry, The gross chemical composition and fatty acid composition of 18 species of tropical Australian microalgae for possible use in mariculture, Aquaculture, 170, 147-159 (1999)
    Riebesell, U., A. T. Revill, D. G. Holdsworth and J. K. Volkman, The effects of varying CO2 concentration on lipid composition and carbon isotope fractionation in Emiliania Huxleyi, Geochim Cosmochim Acta, 64, 4179-4192 (2000)
    Rorrer, G. L. and R. K. Mullikin, Modeling and simulation of a tubular recycle photobioreactor for macroalgal cell suspension cultures, Chem Eng Sci, 54, 3153-3162 (1999)
    Sato, N., M. Tsuzuki and A. Kawaguchi, Glycerolipid synthesis in Chlorella kessleri 11 h. II. Effect of the CO2 concentration during growth, Biochim Biophy Acta, 1633, 35- 42 (2003)
    Sawayama, S., S. Inoue, Y. Dote and S. Yokoyama, CO2 fixation and oil production through microalga, Energy Convers Manage, 36, 729-731 (1995)
    Sheehan, J., T. Dunahay, J. Benemann and P. Roessler, “A look back at the U.S. Department of Energy’s Aquatic Species Program-Biodiesel from Algae”, Prepared for U.S. Department of Energy’s Office of Fuels Development, by National Renewable Energy Laboratory, July (1998)
    Shi, X. M., X. W. Zhang and F. Chen, Heterotrophic production of biomass and lutein by Chlorella protothecoides on various nitrogen sources, Enzyme Microb Technol, 27, 312-318 (2000)
    Sung, K. D., J. S. Lee, C. S. Shin, S. C. Park and M. J. Choi, CO2 fixation by Chlorella sp. KR-1 and its cultural characteristics, Biores Technol, 68, 296-273 (1999)
    Susan, M. R., T. Luong-Van, L. George and L. P. David, Effect of temperature on growth, chemical composition and fatty acid composition of tropical Australian microalgae grown in batch cultures, Aquaculture, 211, 195-214 (2002)
    Tamiya, H., Control of cell division in microalgae, J Cell Comp Physiol, 62, 157-174 (1963)
    Tatsuzawa, H. and E. Takizawa, Changes in lipid and fatty acid composition of Pavlova lutheri, Phytochemistry, 40, 397-400 (1995)
    Thompson, P. A., M. X. Guo and P. J. Harrison, , Nutritional value of diets that vary in fatty acid composition for larval Pacific oysters (Crassostrea gigas), Aquaculture, 143, 379- 391 (1996)
    Turcotte, G. and N. Kosaric, Biosynthesis of lipids by Rhodosporidium toruloides ATCC 10788, J Biotechnol, 8, 221-238 (1988)
    Usui, N. and M. Ikenouchi, The biological CO2 fixation and utilization project by RITE(1): highly-effective photobioreactor system, Energy Convers Manage, 38, 487-492 (1997)
    Vernerey, A., J. Albiol, C. Lasseur and F. Godia, Scale-up and design of a pilot-plant photobioreactor for the continuous culture of Spirulina platensis, Biotechnol Prog, 17, 431-438 (2001)
    Vicente, G., M. Martinez and J. Aracil, Integrated biodiesel production: a comparison of different homogeneous catalysts systems, Biores Technol, 92, 297-305 (2004)
    Whyte, J. N. C., N. Bourne and C. A. Hodgson, Influence of algal diets on biochemical compositions and energy reserves in Patinopecten yessoensis (Jay) larvae, Aquaculture, 78, 333-347 (1989)
    Yongmanitchai, W. and O. P. Ward, Growth of and omega-3 fatty acid production by Phaeodactylum tricornutum under different culture conditions, Appl Environ Microbiol, 57, 419-425 (1991)
    Yoon, S. H. and J. S. Rhee, Lipid from yeast fermentation: Effects of cultural condition on lipid production and its characteristics of Rhodotorula glutinis, J Am Oil Chem Soc, 60, 1281-1286 (1983a)
    Yoon, S. H. and J. A. Rhee, Quantitative physiology of Rhodotorula glutinis for microbial lipid production, Process Biochemistry, 18, 2-4 (1983b)
    Zhu, C. J., Y. K. Lee and T. M. Chao, Effects of temperature and growth phase on lipid and biochemical composition of Isochrysis galbana TK1, J Appl Phycol, 9, 451-457 (1997)
    Zhu, M., P. P. Zhou and L. J. Yu, Extraction of lipids from Mortierella alpina and enrichment of arachidonic acid from the fungal lipids, Biores Technol, 84, 93-95 (2002)

    QR CODE