簡易檢索 / 詳目顯示

研究生: 吳柏佑
Bo-You Wu
論文名稱: 摻雜鈰之碳點合成與光學性質
Synthesis and Optical properties of Ce doped carbon dots
指導教授: 陳詩芸
Shih-Yun Chen
口試委員: 陳良益
Liang-Yih Chen
陳啟亮
Chi-Liang Chen
學位類別: 碩士
Master
系所名稱: 工程學院 - 材料科學與工程系
Department of Materials Science and Engineering
論文出版年: 2022
畢業學年度: 110
語文別: 中文
論文頁數: 71
中文關鍵詞: 碳點摻雜螢光
外文關鍵詞: carbon dot, doped, Fluorescent
相關次數: 點閱:366下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本實驗首次成功利用水熱法合成摻雜 Ce 之碳點,所合成的樣品以 X 光繞射儀(X-ray diffraction, XRD)、穿透式電子顯微鏡(Transmission electron microscope, TEM)、掃描式電子顯微鏡(Scanning Electron Microscope, SEM)和 X 射線光電子能譜儀 (X-ray photoelectron spectroscopy, XPS),進行結晶、粒徑、形貌、價態、結構變化以及化學結構之分析,光學性質的部份以紫外光/可見光吸收光譜 (UV-Vis spectrophotometer, UV-vis) 以及光激螢光光譜(Photoluminescence, PL)進行探討。 TEM 的結果顯示摻雜鈰之碳點尺寸約為 4.2nm,有明顯結晶相。 XPS 的結果發現碳點中確實有鈰的摻雜造成對化學結構的改變, UV-vis 的結果指出化學結構的變化會影響吸收範圍。 PL 的結果則顯示 Ce 摻入碳點後對於發光效果有所提升,特別是在紫外光波段。


This experiment is the first to successfully synthesize carbon dots doped with Ce by hydrothermal method. X-ray diffraction (XRD), transmission electron microscope (TEM), scanning electron microscope (SEM) and X-ray photoelectron spectroscopy (XPS) were utilized to characterize the crystalline structure, particle size, surface morphology, valence change, structural change and chemical structure identification. UV-Vis spectrophotometer (UV-vis) and photoluminescence (PL) were used to investigate the optical properties of Ce after doping with carbon dots. From the TEM and XPS results, it was confirmed that the carbon doped with Ce could be successfully synthesized by hydrothermal method. In the XPS results, it was found that the chemical structure was affected by the doping of Ce into carbon dots, and the optical properties were changed by the change of chemical structure in UV-vis. In the PL results, it was found that the doping of Ce with carbon dots improved the luminescence effect.

摘要 III Abstract IV 致謝 V 目錄 VI 圖目錄 IX 表目錄 XII 第一章 緒論 1 1.1 前言 1 1.2 研究動機 2 第二章 文獻回顧 3 2.1碳的介紹及應用 3 2.1.1 碳的介紹 3 2.1.2 碳點發展史 4 2.1.3 碳點之應用 5 2.1.4 碳點之摻雜研究 5 2.2碳點的合成法 8 2.2.1 雷射燒蝕法 9 2.2.2 電化學氧化法 9 2.2.3化學氧化法 9 2.2.4微波法 9 2.2.5水熱/溶劑熱法 10 第三章 實驗流程與分析技術 12 3.1 材料製備方式 12 3.1.1 奈米二氧化鈰製備 12 3.1.2碳點之製備 13 3.1.3 摻雜鈰之碳點製備 14 3.2 結構分析 15 3.2.1 X光繞射分析 15 3.2.2 掃描式電子顯微鏡 17 3.2.3 穿透式電子顯微鏡 18 3.2.4 掃描穿透式電子顯微鏡/電子能量損失光譜 20 3.2.5 X 射線光電子能譜儀 22 3.3 性能分析 24 3.3.1紫外光/可見光吸收光譜 24 3.3.2 光激螢光光譜 25 第四章 結果與討論 27 4.1.摻雜鈰對碳點之結構與光學性能影響 27 4.1.1 黑色溶液 29 4.1.1.1 XRD分析 29 4.1.1.2 TEM分析 30 4.1.1.3 XPS分析 32 4.1.1.4 UV-vis 分析 36 4.1.1.5 PL 分析 39 4.1.1.6 綜合討論 41 4.1.3 沉澱物之分析 45 4.1.3.1 XRD 分析 45 4.1.3.2 SEM 分析 46 4.1.3.3 TEM/ STEM/ EELS 分析 47 4.1.3.4 XPS 分析 49 4.1.3.5 UV-vis 分析 52 4.1.3.6 PL 分析 53 4.1.3.7 綜合討論 54 4.2 Ce 濃度對光學特性的影響 56 4.2.1 TEM 分析 56 4.2.2 XPS 分析 57 4.2.2 UV-vis 分析 60 4.2.3 PL 分析 61 第五章 結論 62 參考文獻 63

[1] Sakai, Y., Chelikowsky, J. R., & Cohen, M. L. (2018). Magnetism in amorphous carbon. Physical Review Materials, 2(7), 074403.
[2] Pierrat, P., Wang, R., Kereselidze, D., Lux, M., Didier, P., Kichler, A., ... & Lebeau, L. (2015). Efficient in vitro and in vivo pulmonary delivery of nucleic acid by carbon dot-based nanocarriers. Biomaterials, 51, 290-302.
[3] Song, X., Guo, Q., Cai, Z., Qiu, J., & Dong, G. "Synthesis of multi-color fluorescent carbon quantum dots and solid state CQDs@ SiO2 nanophosphors for light-emitting devices." Ceramics International 45.14 (2019): 17387-17394.
[4] Shen, T., Wang, Q., Guo, Z., Kuang, J., & Cao, W. "Hydrothermal synthesis of carbon quantum dots using different precursors and their combination with TiO2 for enhanced photocatalytic activity." Ceramics International 44.10 (2018): 11828-11834.
[5] Wen, Q. L., Pu, Z. F., Yang, Y. J., Wang, J., Wu, B. C., Hu, Y. L., ... & Cao, Q. "Hyaluronic acid as a material for the synthesis of fluorescent carbon dots and its application for selective detection of Fe3+ ion and folic acid." Microchemical Journal 159 (2020): 105364.
[6] Xu, X., Ray, R., Gu, Y., Ploehn, H. J., Gearheart, L., Raker, K., & Scrivens, W. A. "Electrophoretic analysis and purification of fluorescent single-walled carbon nanotube fragments." Journal of the American Chemical Society 126.40 (2004): 12736-12737.
[7] Sun, Y. P., Zhou, B., Lin, Y., Wang, W., Fernando, K. S., Pathak, P., ... & Xie, S. Y. "Quantum-sized carbon dots for bright and colorful photoluminescence." Journal of the American Chemical Society 128.24 (2006): 7756-7757.
[8] Wang, C., Zhang, L., Huang, X., Zhu, Y., Li, G. K., Gu, Q., ... & Ma, D. "Maximizing sinusoidal channels of HZSM-5 for high shape-selectivity to p-xylene." Nature communications 10.1 (2019): 1-8.
[9] Sabzehmeidani, M. M., Mahnaee, S., Ghaedi, M., Heidari, H., & Roy, V. A. "Carbon based materials: A review of adsorbents for inorganic and organic compounds." Materials Advances 2.2 (2021): 598-627.
[10] Zhang, B. T., Zheng, X., Li, H. F., & Lin, J. M. "Application of carbon-based nanomaterials in sample preparation: A review." Analytica chimica acta 784 (2013): 1-17.
[11] Sun, Y. P., Zhou, B., Lin, Y., Wang, W., Fernando, K. S., Pathak, P., ... & Xie, S. Y. "Quantum-sized carbon dots for bright and colorful photoluminescence." Journal of the American Chemical Society 128.24 (2006): 7756-7757.
[12] Ray, S. C., Saha, A., Jana, N. R., & Sarkar, R. "Fluorescent carbon nanoparticles: synthesis, characterization, and bioimaging application." The Journal of Physical Chemistry C 113.43 (2009): 18546-18551.
[13] Zhao, Zhichao, and Yibing Xie. "Enhanced electrochemical performance of carbon quantum dots-polyaniline hybrid." Journal of Power Sources 337 (2017): 54-64.
[14] Xu, Q., Liu, Y., Su, R., Cai, L., Li, B., Zhang, Y., ... & Sreeprasad, T. S. "Highly fluorescent Zn-doped carbon dots as Fenton reaction-based bio-sensors: an integrative experimental–theoretical consideration." Nanoscale 8.41 (2016): 17919-17927.
[15] Shen, T., Wang, Q., Guo, Z., Kuang, J., & Cao, W. "Hydrothermal synthesis of carbon quantum dots using different precursors and their combination with TiO2 for enhanced photocatalytic activity." Ceramics International 44.10 (2018): 11828-11834.
[16] Zhu, S., Meng, Q., Wang, L., Zhang, J., Song, Y., Jin, H., ... & Yang, B. "Highly photoluminescent carbon dots for multicolor patterning, sensors, and bioimaging." Angewandte Chemie 125.14 (2013): 4045-4049.
[17] Hu, Y., Yang, J., Tian, J., Jia, L., & Yu, J. S. "Waste frying oil as a precursor for one-step synthesis of sulfur-doped carbon dots with pH-sensitive photoluminescence." Carbon 77 (2014): 775-782.
[18] Sadhanala, H. K., & Nanda, K. K. "Boron-doped carbon nanoparticles: Size-independent color tunability from red to blue and bioimaging applications." Carbon 96 (2016): 166-173.
[19] Zhou, J., Shan, X., Ma, J., Gu, Y., Qian, Z., Chen, J., & Feng, H. "Facile synthesis of P-doped carbon quantum dots with highly efficient photoluminescence." Rsc Advances 4.11 (2014): 5465-5468.
[20] Xu, Q., Liu, Y., Su, R., Cai, L., Li, B., Zhang, Y., ... & Sreeprasad, T. S. "Highly fluorescent Zn-doped carbon dots as Fenton reaction-based bio-sensors: an integrative experimental–theoretical consideration." Nanoscale 8.41 (2016): 17919-17927.
[21] Liu, T., Li, N., Dong, J. X., Luo, H. Q., & Li, N. B. "Fluorescence detection of mercury ions and cysteine based on magnesium and nitrogen co-doped carbon quantum dots and IMPLICATION logic gate operation." Sensors and Actuators B: Chemical 231 (2016): 147-153.
[22] Liu, Z. X., Chen, B. B., Liu, M. L., Zou, H. Y., & Huang, C. Z. "Cu (I)-Doped carbon quantum dots with zigzag edge structures for highly efficient catalysis of azide–alkyne cycloadditions." Green Chemistry 19.6 (2017): 1494-1498.
[23] Zhu, S., Meng, Q., Wang, L., Zhang, J., Song, Y., Jin, H., & Yang, B. "Highly photoluminescent carbon dots for multicolor patterning, sensors, and bioimaging." Angewandte Chemie 125.14 (2013): 4045-4049.
[24] Watanabe, Shingo, Xiaoliang Ma, and Chunshan Song. "Characterization of structural and surface properties of nanocrystalline TiO2− CeO2 mixed oxides by XRD, XPS, TPR, and TPD." The Journal of Physical Chemistry C 113.32 (2009): 14249-14257.
[25] Zhi Yang , Minghan Xu , Yun Liu , Fengjiao He , Feng Gao , Yanjie Su , Hao Wei and Yafei Zhang. "Nitrogen-doped, carbon-rich, highly photoluminescent carbon dots from ammonium citrate." Nanoscale 6.3 (2014): 1890-1895.
[26] Pierrat, P., Wang, R., Kereselidze, D., Lux, M., Didier, P., Kichler, A., ... & Lebeau, L. "Efficient in vitro and in vivo pulmonary delivery of nucleic acid by carbon dot-based nanocarriers." Biomaterials 51 (2015): 290-302.
[27] Demir, B., Lemberger, M. M., Panagiotopoulou, M., Medina Rangel, P. X., Timur, S., Hirsch, T., ... & Haupt, K. "Tracking hyaluronan: molecularly imprinted polymer coated carbon dots for cancer cell targeting and imaging." ACS applied materials & interfaces 10.4 (2018): 3305-3313.
[28] Cheng, Y., Li, C., Mu, R., Li, Y., Xing, T., Chen, B., & Huang, C. "Dynamically long-term imaging of cellular RNA by fluorescent carbon dots with surface isoquinoline moieties and amines." Analytical chemistry 90.19 (2018): 11358-11365.
[29] Zhang, H., Fan, J., Wang, J., Zhang, S., Dou, B., & Peng, X. "An off–on Cox-2-specific fluorescent probe: Targeting the golgi apparatus of cancer cells." Journal of the American Chemical Society 135.31 (2013): 11663-11669.
[30] Song, X., Guo, Q., Cai, Z., Qiu, J., & Dong, G. "Synthesis of multi-color fluorescent carbon quantum dots and solid state CQDs@ SiO2 nanophosphors for light-emitting devices." Ceramics International 45.14 (2019): 17387-17394.
[31] Xu, J., Miao, Y., Zheng, J., Wang, H., Yang, Y., & Liu, X. "Carbon dot-based white and yellow electroluminescent light emitting diodes with a record-breaking brightness." Nanoscale 10.23 (2018): 11211-11221.
[32] Wei, J. Y., Lou, Q., Zang, J. H., Liu, Z. Y., Ye, Y. L., Shen, C. L., ... & Shan, C. X. "Scalable synthesis of green fluorescent carbon dot powders with unprecedented efficiency." Advanced Optical Materials 8.7 (2020): 1901938.
[33] Zhang, X., Zhang, Y., Wang, Y., Kalytchuk, S., Kershaw, S. V., Wang, Y., ... & Rogach, A. L. "Color-switchable electroluminescence of carbon dot light-emitting diodes." ACS nano 7.12 (2013): 11234-11241.
[34] Chen, J., Liu, W., Mao, L. H., Yin, Y. J., Wang, C. F., & Chen, S. "Synthesis of silica-based carbon dot/nanocrystal hybrids toward white LEDs." Journal of Materials Science 49.21 (2014): 7391-7398.
[35] Shen, T., Wang, Q., Guo, Z., Kuang, J., & Cao, W. "Hydrothermal synthesis of carbon quantum dots using different precursors and their combination with TiO2 for enhanced photocatalytic activity." Ceramics International 44.10 (2018): 11828-11834.
[36] Wang, F., Chen, P., Feng, Y., Xie, Z., Liu, Y., Su, Y., ... & Liu, G. "Facile synthesis of N-doped carbon dots/g-C3N4 photocatalyst with enhanced visible-light photocatalytic activity for the degradation of indomethacin." Applied Catalysis B: Environmental 207 (2017): 103-113.
[37] Chen, P., Wang, F., Chen, Z. F., Zhang, Q., Su, Y., Shen, L., ... & Liu, G. "Study on the photocatalytic mechanism and detoxicity of gemfibrozil by a sunlight-driven TiO2/carbon dots photocatalyst: the significant roles of reactive oxygen species." Applied Catalysis B: Environmental 204 (2017): 250-259.
[38] Wen, Q. L., Pu, Z. F., Yang, Y. J., Wang, J., Wu, B. C., Hu, Y. L., ... & Cao, Q. "Hyaluronic acid as a material for the synthesis of fluorescent carbon dots and its application for selective detection of Fe3+ ion and folic acid." Microchemical Journal 159 (2020): 105364.
[39] Zhao, H. X., Liu, L. Q., De Liu, Z., Wang, Y., Zhao, X. J., & Huang, C. Z. "Highly selective detection of phosphate in very complicated matrixes with an off–on fluorescent probe of europium-adjusted carbon dots." Chemical Communications 47.9 (2011): 2604-2606.
[40] Xu, H., Yang, X., Li, G., Zhao, C., & Liao, X. "Green synthesis of fluorescent carbon dots for selective detection of tartrazine in food samples." Journal of agricultural and food chemistry 63.30 (2015): 6707-6714.
[41] Du, F., Zeng, F., Ming, Y., & Wu, S. "Carbon dots-based fluorescent probes for sensitive and selective detection of iodide." Microchimica Acta 180.5 (2013): 453-460.
[42] Yang, Z., Xu, M., Liu, Y., He, F., Gao, F., Su, Y., ... & Zhang, Y. "Nitrogen-doped, carbon-rich, highly photoluminescent carbon dots from ammonium citrate." Nanoscale 6.3 (2014): 1890-1895.
[43] Jiang, K., Sun, S., Zhang, L., Wang, Y., Cai, C., & Lin, H. "Bright-yellow-emissive N-doped carbon dots: preparation, cellular imaging, and bifunctional sensing." ACS applied materials & interfaces 7.41 (2015): 23231-23238.
[44] Chandra, S., Patra, P., Pathan, S. H., Roy, S., Mitra, S., Layek, A., ... & Goswami, A. "Luminescent S-doped carbon dots: an emergent architecture for multimodal applications." Journal of Materials Chemistry B 1.18 (2013): 2375-2382.
[45] Shi, D., Yan, F., Zheng, T., Wang, Y., Zhou, X., & Chen, L. "P-doped carbon dots act as a nanosensor for trace 2, 4, 6-trinitrophenol detection and a fluorescent reagent for biological imaging." RSC advances 5.119 (2015): 98492-98499.
[46] Xu, Q., Liu, Y., Su, R., Cai, L., Li, B., Zhang, Y., ... & Sreeprasad, T. S. "Highly fluorescent Zn-doped carbon dots as Fenton reaction-based bio-sensors: an integrative experimental–theoretical consideration." Nanoscale 8.41 (2016): 17919-17927.
[47] Li, Y., Xu, X., Lei, B., Zhuang, J., Zhang, X., Hu, C., ... & Liu, Y. "Magnesium-nitrogen co-doped carbon dots enhance plant growth through multifunctional regulation in photosynthesis." Chemical Engineering Journal 422 (2021): 130114.
[48] Du, J., Zhao, Y., Chen, J., Zhang, P., Gao, L., Wang, M., ... & Zhu, C. "Difunctional Cu-doped carbon dots: catalytic activity and fluorescence indication for the reduction reaction of p-nitrophenol." RSC advances 7.54 (2017): 33929-33936.
[49] Lu, C., Liu, Y., Wen, Q., Liu, Y., Wang, Y., Rao, H., ... & Wang, X. "Ratiometric fluorescence assay for L-Cysteine based on Fe-doped carbon dot nanozymes." Nanotechnology 31.44 (2020): 445703.
[50] Zhu, D., Zhuo, S., Zhu, C., Zhang, P., & Shen, W. "Synthesis of catalytically active peroxidase-like Fe-doped carbon dots and application in ratiometric fluorescence detection of hydrogen peroxide and glucose." Analytical Methods 11.20 (2019): 2663-2668.

無法下載圖示 全文公開日期 2032/09/29 (校內網路)
全文公開日期 本全文未授權公開 (校外網路)
全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
QR CODE