簡易檢索 / 詳目顯示

研究生: 葉青松
CING-SUNG YEH
論文名稱: 利用失焦法輔助DLP成形製造固定式微透鏡陣列
Manufacturing Fixed Microlens Array by Defocusing Assisted Digital Light Processing
指導教授: 陳品銓
Pin-Chuan Chen
口試委員: 陳品銓
Pin-Chuan Chen
林鼎晸
Ding-Zheng Lin
曹嘉文
Chia-Wen Tsao
饒達仁
Da-Jeng Yao
李昇憲
Sheng-Shian Li
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2021
畢業學年度: 109
語文別: 中文
論文頁數: 111
中文關鍵詞: 微透鏡陣列光固化數位光處理失焦化高分子材料
外文關鍵詞: digital light process,, defocusing, stereolithography
相關次數: 點閱:232下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

微透鏡陣列(Micro Lens Arrays, MLA)為眾多微結構中最為廣泛使用之光學元件,本研究利用失焦輔助數位光處理(Digital Light Process, DLP)技術與數位光罩對玻璃載板上的樹脂進行曝光,成功製造具高解析度及高填充因子之球面微透鏡陣列,本製程有著加工時間極短、加工彈性高、成本低等優點,十分適合應用往後微透鏡陣列之學術研究。
本製程利用DLP技術投影高解析度(full HD 1920×1080 pixel)之全螢幕紫外光,搭配Matlab建立灰階圖檔作為數位光罩,能夠精準的調整數位光罩中每個單獨像素(pixel, px)的灰度值(0-255)以改變單像素(5μm)的曝光能量,並利用移動光軸改變焦點距離(精度:1μm)來產生失焦化用以改善DMD(Digital Micromirror Device)晶片在投影時造成的表面粗糙效果。
由於DLP製程為利用數位光罩對樹脂進行曝光,因此能利用各項參數調整微透鏡陣列的輪廓形貌,如:曝光能量、失焦距離、光罩直徑等,因此能夠因應不同需求生產出各種特性的微透鏡陣列,如:高數值孔徑、特定曲率、高解析度、高填充因子等。
本研究設計並執行了多種實驗,主要分為兩大階段,第一階段實驗用來了解製程中各項參數對樹脂成形的影響、成形均勻度。第二階段實驗用來檢視微透鏡成品的光學表現以及利用製程的特長進行高填充因子及多焦點微透鏡陣列的實作。第一階段實驗結果證實:(1)能量與透鏡成形高度成自然對數曲線增長,且曲率高度變異係數為0.05;(2)在相同能量下,改變灰度與時間的比例不影響成形高度;(3)改以灰階遞減數位光罩曝光使透鏡外型改為半球面狀,且不影響直徑及高度,證實遞減的光罩的透鏡有更好的光學效果;(4)失焦的方向以向上為佳,直徑及高度的失真度分別為1%及3%,且失焦後的微透鏡陣列有更好的解析度;(5)改變整體的填充因子並不影響單顆微透鏡的成形;(6)失焦距離越大能對高度越高的透鏡起到平滑化效果,需對應不同的曲率高度採取不同的失焦距離。第二階段的實驗結果證實:(1)本製程能夠生產聚焦平面一致的微透鏡陣列,且有高解析度為45.3lp/mm;(2)能夠於單次曝光下製作多種直徑的微透鏡陣列擁有多重焦點的特性,且能製造填充因子為100之微透鏡陣列。


Micro lens array (MLA) is the most widely used optical element in many microstructures. This research uses the defocusing assisted Digital Light Process (DLP) technology and the digital mask to exposure the resin on the glass. This process can product 100% fill factor MLA and mutifocus MLA with spherical profile, this manufacturing method has the advantages of extremely short manufacturing time, high flexibility on processing and low cost.
This process uses DLP technology to project full-screen ultraviolet light with 1920×1080 pixels, and uses Matlab to generate a grayscale image file as a digital mask, which can accurately adjust gray value of each pixel on picture to change the exposure energy of one single pixel (5μm), and moving the light source to change the focal distance from light source to froming platform can conduct defocusing effect to reduce the roughness due to the DMD chip.
Since DLP process project UV to curing resin by digital photomask, various parameters can be adjusted to control the profile of the MLA, such as exposure energy, defocusing distance, diameter of photomask, etc., so it can produce various types of MLA according to different needs. Such as: high numerical aperture, specific curvature, high resolution, high fill factor, etc.
There were multiple experiments had been designed and conduct, they were divided into two main phases, the first phase of experiment is about how parameters of processing effects to lens forming such as exposure energy, defocusing distance, diameter of photo mask. The purpose of second phase of experiment is test the optical performance of MLAs and use advantages to manufacture high fill factor and multi-focus MLAs. The results of first phase indicated the following: (1) Acrooding to energy, the forming height of MLA grow in a natural logarithmic curve, and the coefficient of variation of height is 0.05; (2) Base on same energy, changing the ratio of gray and time does not affect the forming height; (3) Exposure with a decreasing gray scale mask can get a hemispherical lens with better optical performance; (4) Upward direction of defocusing is preferably, and the distortion of diameter and height are 1% and 3% , defocused MLA has higher resolution on USAF1951; (5) Changing the filling factor of mask does not affect the profile of a single microlens;(6)Longer defocusing distance can smooth lens has higher sag height, acrroding to different sag height should apply different defocusing distance. The results of the second phase indicated the following: (1) Resulting MLA has uniform focal plane and has a high resolution in 45.3lp/mm; (2) This processing can manufacture MLAs with multiple diameters in one single exposure shows characteristics of multiple focal points and also can manufacture microlens arrays with 100% fill factor.

目錄 摘要 II Abstract IV 致謝 V 目錄 VI 圖目錄 IX 表目錄 XVII 第1章 緒論 1 1.1研究背景 1 1.2研究動機與目的 2 1.3研究方法 3 1.4論文架構 4 第2章 微透鏡製程與光固化成形之文獻回顧 8 2.1固定式球面微透鏡相關文獻: 9 2.1.1熱回流法 9 2.1.2表面張力法 11 2.1.3熱擠壓法 14 2.1.4雷射加工法 15 2.1.5濕蝕刻法 16 2.2光固化微透鏡陣列製程: 18 2.2.1灰階光罩法 19 2.2.2數位光罩法 20 2.2.3雙光子雷射3D列印成形法製作仿生透鏡組 24 2.3DLP表面平滑化論文 25 2.3.1高頻振動法 25 2.3.2移動失焦法 26 2.4本實驗室先前之微透鏡陣列製程研究: 27 第3章 光固化微透鏡陣列製程介紹 32 3.1Matlab灰階處理生成圖檔 32 3.1.1曝光圖檔之灰階遞減公式 32 3.1.2 Matlab之灰階遞減程式編寫 33 3.2曝光製程介紹 34 3.2.1曝光操作設定 35 3.3微透鏡陣列製程與後處理步驟 38 第4章 實驗設備與實驗方法 41 4.1研究用設備 41 4.1.1製程設備 41 4.1.2量測設備 42 4.2微透鏡陣列實驗方法 45 4.2.1能量對成形高度影響曲線 47 4.2.2固定能量下改變灰度及曝光時間對成形的關係 49 4.2.3灰階處理與樹脂成形關係 50 4.2.4失焦點法與成形關係 51 4.2.5改變填充因子對成形的影響 52 4.2.6失焦距離對不同能量下透鏡的表面成形影響 52 4.2.7聚焦平面檢測 53 4.2.8成像解析度檢測 54 4.2.9多重焦距及高填充因子微透鏡陣列應用 57 第5章 實驗結果與討論 61 5.1能量對成形高度影響曲線 61 5.1.1基於舊的U-light下的成形曲線 62 5.2固定能量下改變灰度及曝光時間對成形的關係 63 5.3灰階處理與樹脂成形關係 64 5.4失焦點法與成形關係 65 5.4.1失焦距離及方向對透鏡高度的影響 66 5.4.2失焦距離及方向對透鏡直徑的影響 66 5.4.3在不同灰度下,向上失焦的形貌變化 67 5.5改變填充因子對成形的影響 68 5.6以SEM觀察失焦距離對不同能量下透鏡的表面成形影響 70 5.7聚焦平面檢測 71 5.8成像解析度檢測 73 5.8.1曝光時間對於表面粗糙度的影響 73 5.9 多重焦距及高填充因子微透鏡陣列應用結果 75 5.9.1多焦點微透鏡陣列: 75 5.9.2高填充因子微透鏡陣列: 78 第6章 結論與未來展望 81 6.1結論 81 6.2未來展望 83 第7章 參考文獻 84 附錄A-幾何光學模擬軟體 89 A.1物件操作方法 89 A.2繪圖及光線設定 91 A.3透光物折射率調整及光線亮度調整 91 附錄B-MLA光學及成像表現 93

[1] Schmidleithner, Christina, and Deepak M. Kalaskar. "Stereolithography." IntechOpen, 2018. 1-22.
[2] Bastani, Saeed, and Majid Mohseni. "UV-Curable Nanocomposite Coatings and Materials." Handbook of Nanoceramic and Nanocomposite Coatings and Materials. Butterworth-Heinemann, 2015. 155-182.
[3] Ge, Qi, et al. "Multimaterial 4D printing with tailorable shape memory polymers." Scientific reports 6.1 (2016): 1-11.
[4] Zheng, Xiaoyu, et al. "Ultralight, ultrastiff mechanical metamaterials." Science 344.6190 (2014): 1373-1377.
[5] Kowsari, Kavin, et al. "High-efficiency high-resolution multimaterial fabrication for digital light processing-based three-dimensional printing." 3D Printing and Additive Manufacturing 5.3 (2018): 185-193.
[6] Li, Lei, and Y. Yi Allen. "Design and fabrication of a freeform microlens array for a compact large-field-of-view compound-eye camera." Applied optics 51.12 (2012): 1843-1852.
[7] Balram, Nikhil, and Ivana Tošić. "Light‐field imaging and display systems." Information Display 32.4 (2016): 6-13.
[8] Urey, Hakan, and Karlton D. Powell. "Microlens-array-based exit-pupil expander for full-color displays." Applied optics 44.23 (2005): 4930-4936.
[9] Kim, Hyun Myung, et al. "Large area fabrication of engineered microlens array with low sag height for light-field imaging." Optics express 27.4 (2019): 4435-4444.
[10] Yuan, Chao, et al. "Ultrafast three-dimensional printing of optically smooth microlens arrays by oscillation-assisted digital light processing." ACS applied materials & interfaces 11.43 (2019): 40662-40668.
[11] Sun, C., et al. "Projection micro-stereolithography using digital micro-mirror dynamic mask." Sensors and Actuators A: Physical 121.1 (2005): 113-120.
[12] Hsieh, Hsin-Ta, and Guo-Dung John Su. "A novel boundary-confined method for high numerical aperture microlens array fabrication." Journal of micromechanics and microengineering 20.3 (2010): 035023.
[13] Jung, Hyukjin, and Ki-Hun Jeong. "Monolithic polymer microlens arrays with high numerical aperture and high packing density." ACS applied materials & interfaces 7.4 (2015): 2160-2165.
[14] Zhou, Xiongtu, et al. "Fabrication of large-scale microlens arrays based on screen printing for integral imaging 3D display." ACS applied materials & interfaces 8.36 (2016): 24248-24255.
[15] Zhang, Dawei, et al. "Fabrication of a microlens array with controlled curvature by thermally curving photosensitive gel film beneath microholes." ACS applied materials & interfaces 9.19 (2017): 16604-16609.
[16] Xu, Qiao, et al. "Fabrication of polymer microlens array with controllable focal length by modifying surface wettability." Optics express 26.4 (2018): 4172-4182.
[17] Liu, Yongshun, et al. "Polymeric microlens array fabricated with PDMS mold-based hot embossing." Journal of Micromechanics and Microengineering 24.9 (2014): 095028.
[18] Yong, Jiale, et al. "Rapid fabrication of large-area concave microlens arrays on PDMS by a femtosecond laser." ACS applied materials & interfaces 5.19 (2013): 9382-9385.
[19] Deng, Zefang, et al. "Fabrication of large-area concave microlens array on silicon by femtosecond laser micromachining." Optics letters 40.9 (2015): 1928-1931.
[20] Lee, Joong Hoon, et al. "High-Identical Numerical Aperture, Multifocal Microlens Array through Single-Step Multi-Sized Hole Patterning Photolithography." Micromachines 11.12 (2020): 1068.
[21] Bian, Hao, et al. "Direct fabrication of compound-eye microlens array on curved surfaces by a facile femtosecond laser enhanced wet etching process." Applied Physics Letters 109.22 (2016): 221109.
[22] Audran, S., et al. "Grayscale lithography process study applied to zero-gap microlenses for sub-2μm CMOS image sensors." Advances in Resist Materials and Processing Technology XXVII. Vol. 7639. International Society for Optics and Photonics, 2010.
[23] Deng, Qinyuan, et al. "Fabrication of micro-optics elements with arbitrary surface profiles based on one-step maskless grayscale lithography." Micromachines 8.10 (2017): 314.
[24] Ouyang, Xia, et al. "Fabrication of dual-focus microlens array by using dynamic optical projection stereolithography." Conference on Lasers and Electro-Optics/Pacific Rim. Optical Society of America, 2018.
[25] Huang, Shengzhou, et al. "Fabrication of high quality aspheric microlens array by dose-modulated lithography and surface thermal reflow." Optics & Laser Technology 100 (2018): 298-303.
[26] Kowsari, Kavin, et al. "Photopolymer formulation to minimize feature size, surface roughness, and stair-stepping in digital light processing-based three-dimensional printing." Additive Manufacturing 24 (2018): 627-638.
[27] Thiele, Simon, et al. "3D-printed eagle eye: Compound microlens system for foveated imaging." Science advances 3.2 (2017): e1602655.
[28] Greer, Andrew IM, et al. "Large volume nanoscale 3D printing: Nano-3DP." Applied Materials Today 21 (2020): 100782.
[29] Chen, Pin-Chuan, et al. "Microfabricated microfluidic platforms for creating microlens array." Optics Express 25.14 (2017): 16101-16115.
[30] Chen, Pin-Chuan, Ren-Hao Zhang, and Liang-Ta Chen. "Using Micromachined Molds, Partial-curing PDMS Bonding Technique, and Multiple Casting to Create Hybrid Microfluidic Chip for Microlens Array." Micromachines 10.9 (2019): 572.
[31] Chen, Pin-Chuan, Liang-Ta Chen, and Cing-Sung Yeh. "Tunable microlens array fabricated by a silicone oil-induced swelled polydimethylsiloxane (PDMS) membrane bonded to a micro-milled microfluidic chip." Optics Express 28.20 (2020): 29815-29828.
[32] Kim, Hyun Myung, et al. "Large area fabrication of engineered microlens array with low sag height for light-field imaging." Optics express 27.4 (2019): 4435-4444.
[33] Hahne, Christopher, et al. "Refocusing distance of a standard plenoptic camera." Optics Express 24.19 (2016): 21521-21540.
[34] Georgiev, Todor, and Chintan Intwala. "Light field camera design for integral view photography." Adobe Technical Report 1 (2006): 13.
[35] Kwon, Hyouk, et al. "A high-sag microlens array film with a full fill factor and its application to organic light emitting diodes." Journal of Micromechanics and Microengineering 18.6 (2008): 065003.
[36] Zhong, Kejun, et al. "Fabrication of PDMS microlens array by digital maskless grayscale lithography and replica molding technique." Optik 125.10 (2014): 2413-2416.
[37] Wu, Dong, et al. "High numerical aperture microlens arrays of close packing." Applied physics letters 97.3 (2010): 031109.
[38] Yuan, X-C., et al. "Soft-lithography-enabled fabrication of large numerical aperture refractive microlens array in hybrid SiO 2–TiO 2 sol-gel glass." Applied physics letters 86.11 (2005): 114102.
[39] Ahmed, Rajib, Ali K. Yetisen, and Haider Butt. "High numerical aperture hexagonal stacked ring-based bidirectional flexible polymer microlens array." ACS nano 11.3 (2017): 3155-3165.
[40] Lee, Joong Hoon, et al. "High-Identical Numerical Aperture, Multifocal Microlens Array through Single-Step Multi-Sized Hole Patterning Photolithography." Micromachines 11.12 (2020): 1068.
[41] Chen, Xiangfan, et al. "High‐speed 3D printing of millimeter‐size customized aspheric imaging lenses with sub 7 nm surface roughness." Advanced Materials 30.18 (2018): 1705683.
[42] 凃懿庭”幾何光學模擬”: https://ricktu288.github.io/ray-optics/simulator/ 

無法下載圖示 全文公開日期 2026/08/19 (校內網路)
全文公開日期 2026/08/19 (校外網路)
全文公開日期 2026/08/19 (國家圖書館:臺灣博碩士論文系統)
QR CODE