簡易檢索 / 詳目顯示

研究生: 蔡明志
Ming-Chih Tsai
論文名稱: 摻雜磷酸聚苯并咪唑之微結構分析
Investigation on microstructure of phosphoric acid doped PBI membranes
指導教授: 陳志堅
Jyh-Chien Chen
口試委員: 游進陽
Chin-Yang Yu
陳貴賢
Kuei-Hsien Chen
林麗瓊
Li-Chyong Lin
學位類別: 碩士
Master
系所名稱: 工程學院 - 材料科學與工程系
Department of Materials Science and Engineering
論文出版年: 2016
畢業學年度: 104
語文別: 中文
論文頁數: 57
中文關鍵詞: 高溫質子交換膜燃料電池聚苯并咪唑質子通道微結構原子力顯微鏡穿透式電子顯微鏡
外文關鍵詞: PEMFC, PBI, ion channel, microstructure, AFM, TEM.
相關次數: 點閱:432下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

近期,聚苯并咪唑薄膜(PBI)之研究在高溫燃料電池中備受關注,然而,聚苯并咪唑薄膜在發展上遭受到許多問題,如:聚苯并咪唑之溶解度、白金毒化和質子傳導率的提升每項都是挑戰。在本研究中,以溶膠凝膠法(sol-gel transition fabrication)製備聚苯并咪唑(p-PBI)薄膜,並與以溶液澆鑄法製備而成之商用聚苯并咪唑(m-PBI)薄膜進行性質的比較。在同樣磷酸摻雜量下(ADL 10),將兩種製程薄膜進行質子傳導比較,溶膠凝膠法的質子傳導率為0.208 S cm-1是溶液澆鑄法之薄膜(0.11 S cm-1)的兩倍。為了探討兩種薄膜之性質差異,利用原子力顯微鏡(AFM)、導電性原子力顯微鏡(C-AFM)及穿透式電子顯微鏡(TEM)來探討聚苯并咪唑薄膜之微結構。在相同的磷酸摻雜量情況下,溶液澆鑄法之薄膜具有較分散且較小(50 nm)之質子通道,而以溶膠凝膠製成之薄膜具有較多連結且較大(70 nm)之質子通道。在單電池測試方面,在同樣磷酸摻雜量下,以溶膠凝膠法製成之薄膜效能為1050 mW cm-2約為溶液澆鑄法之薄膜效能(570 mW cm-2)的兩倍。透過薄膜表面和橫切面(cross section)的微結構分析之影像,證明了薄膜之性質受到質子傳遞通道的影響甚鉅。以溶膠凝膠製成之薄膜在高溫燃料電池的發展具有相當大之潛能。


Recently, there has been great interest in developing polybenzimidazole (PBI) membranes for high temperature Proton Exchange Membrane Fuel Cell (PEMFC). Research on PBI membranes for high-temp PEMFC has encounter many problems, such as high solubility of PBI, Pt poisoning and low proton conductivity. Herein, we prepared pata-polybenzimidazole membranes (p-PBI) by sol-gel method and compared it with commercially available meta-polybenzimidazole membrane (m-PBI) which was prepared by solution casting method. p-PBI with an acid doping level(ADL) of 10 PA/RU showed proton conductivity of 0.208 S cm-1 which is twice higher than that of commercial m-PBI with the same acid doping level (0.11 S cm-1). Their properties were found to be dependent on their polymer structure as well as the membrane morphology. Microstructures of PBI membranes have been studied by AFM, conductive AFM, EDS and TEM. p-PBI prepared by sol-gel method with ADL=10 PA/RU showed well connected ion channel with size about 70 nm which is larger than that of commercial m-PBI (50 nm). In the fuel cell test, p-PBI membrane prepared by sol-gel method with an acid doping level(ADL) of 10 PA/RU showed peak power density of 1050 mW cm-2, which is twice higher than that of solution casting m-PBI membrane with the same acid doping level (570 mW cm-2). This indicates that, in addition to ADL, microstructure of membranes plays a very important role on the proton conductivity and fuel cell performance. Their morphological images observed by AFM, C-AFM and TEM show the existence of ionic channels, which can be good indication for proton conductivity of the membranes.

中文摘要I AbstractII 致謝III Figure 索引VI Scheme 索引VIII Table 索引IX 第一章 緒論1 1.1前言1 1.2燃料電池類型2 1.3PEMFC之發電原理3 1.4PEMFC之結構4 第二章 文獻回顧7 2.1質子交換膜之歷程及發展7 2.2聚苯并咪唑之聚合方法10 2.3質子之傳導機構12 2.4聚苯并咪唑薄膜之製備15 2.5質子交換膜之質子通道16 2.6研究動機與目的22 第三章 實驗23 3.1實驗儀器23 3.2實驗藥品24 3.3聚苯并咪唑之聚合及薄膜製備25 3.4聚苯并咪唑薄膜摻雜磷酸之方法26 3.5膜電極組(Membrane electrode assembly, MEA)之製備28 3.6PBI薄膜之TEM試片製備方式29 第四章 結果與討論30 4.1聚苯并咪唑薄膜之磷酸摻雜30 4.2質子傳導率31 4.3質子交換膜之微結構分析-原子力顯微鏡34 4.4質子交換膜之微結構分析-導電性原子力顯微鏡40 4.5質子交換膜之微結構分析AFM PeakForce- TUNATM43 4.6質子交換膜之微結構分析-穿透式電子顯微鏡47 4.7質子交換膜之微結構分析-能量散射光譜儀(EDS)49 4.8質子交換模燃料電池之測試51 第五章 結論54 參考文獻55

[1]黃鎮江, 燃料電池, 滄海書局, 台灣, 2008.
[2]A. C. Dupuis, Prog. Mater. Sci. 2011, 56, 289.
[3]J. Larminie, A. Dicks, "Fuel Cell Systems Explained ", 2 edition, John Wiley & Son Ltd, England, 2003.
[4]J. A. Asensio, E. M. Sanchez, P. Gómez-Romero, Chem. Soc. 2010, 39, 3210.
[5]A. J. Appleby, F. R. Foulkes, "Fuel Cell Handbook ", Van Nostrand Reinhold, New York, 1989.
[6]Q. Li, R. He, J. O. Jensen, N. J. Bjerrum, Chem. Mater. 2003, 15, 4896.
[7]Y. Zhang, M. Litf, R. F. Savinell, J. S.Wainright, Polymer Preprints 1999, 40, 480.
[8]C. Genies, R. Mercier, B. Sillion, N. Cornet, G. Gebel, M. Pineri, Polymer 2001, 42, 359.
[9]T. Watari, J. Fang, K. Tanaka, H. Kita, K. I. Okamoto, T. Hirano, J. Membr. Sci. 2004, 230, 111.
[10]X. Guo, J. Fang, T. Watari, K. Tanaka, H. Kita, K. I. Okamoto, Macromolecules 2002, 35, 6707.
[11]N. Asano, M. Aoki, S. Suzuki, K. Miyatake, H. Uchida, M. Watanabe, J. Am. Chem. Soc. 2006, 128, 1762.
[12]M. Rodgers, Y. Yang, S. Holdcroft, Eur. Polym. J. 2006, 42, 1075.
[13]Z. Hu, Y. Yin, H. Kita, K. I. Okamoto, Y. Suto, H. Wang, H. Kawasato, Polymer 2007, 48, 1962.
[14]J. S. Wainright, J. T. Wang, D. Weng, R. F. Savinell, M. Litt, J. Electrochem. Soc. 1995, 142, L121.
[15]O. Savadogo, B. Xing, J. New Mater. Electrochem. Syst. 2000, 3, 345.
[16]Q. Li, R. He, J. O. Jensen, N. J. Bjerrum, Fuel cells 2004, 4, 147.
[17]Q. Li, R. He, J. A. Gao, J. O. Jensen, N. J. Bjerrum, J Electrochem. Soc. 2003, 150, A1599.
[18]C. Pan, R. He, Q. Li, J. O. Jensen, N. J. Bjerrum, H, A, Hjulmand, A. B. Jensen, J. Power Sources 2005, 145, 392.
[19]R. Bouchet, E. Siebert, Solid State Ion. 1999, 118, 287.
[20]Q. Li, H. A. Hjuler, N.J. Bjerrum, J. Appl. Electrochem. Sci. 2001, 32, 773.
[21]H. Vogel, C. S. Marvel, J. Polym. Sci. 1961, 50, 511.
[22]Y. Iwakura, K. Uno, Y. Imai, J. Polym. Sci. Part A: Polym. Chem. 1964, 2, 2606.
[23]M. Ueda, M. Sato, A. Mochizuki, Macromolecules 1985, 18, 2723.
[24]J. M. Bockris, A. K. N. Reddy, Modern Electrochemistry, Plenum Press, N.Y. 1990, 461.
[25]P. Regis, R. Benoit, Biophys. J. 1996, 71, 19.
[26]K. D. Kreuer, A. Rabenau, W. Weppner, Angew. Chem. Int. Ed. 1982, 21, 208.
[27]A. Schechter, R. F. Savinell, Solid State Ion. 2002, 147, 181.
[28]C. E. Hughes, S. Haufe, B. Angerstein, R. Kalim, U. Mähr, A. Reiche, M. Baldus, J. Phys. Chem. B 2004, 108, 13626.
[29]R. Bouchet, E. Siebert, Solid State Ion. 1999, 118, 287.
[30]M. Sonntag, P. Strohriegl, Chem. Mater. 2004, 16, 4736.
[31]Q. Li, J. O. Jensen, R. F. Savinell, N. J. Bjerrum, Prog. Polym. Sci. 2009, 34, 449.
[32]L. Xiao, H. Zhang, E. Scanlon, L. S. Ramanathan, E. E. Choe, D. Rogers, T. Apple, B. C. Benicewicz, Chem. Mater. 2005, 17, 5328.
[33]K. A. Perry, K. L. More, E. A. Payzant, R. A. Meisner, B. G. Sumpter, B. C. Benicewicz, J. Polym. Sci., Part B: Polym. Phys. 2014, 52, 26.
[34]K. A. Mauritz, R. B. Moore, Chem. Rev. 2004, 104, 4535.
[35]R. S. McLean, M. Doyle, B. B. Sauer, Macromolecules 2000, 33, 6541.
[36]E. P. Jutemar, P. Jannasch, J. Membr. Sci. 2010, 351, 87.
[37]O. Savard, T. J. Peckham, Y. S. Yang and S. Holdcroft, Polymer 2008, 49, 4949.
[38]D. A. Bussian, J. R. O’Dea, H. Metiu, S. K. Buratto, Nano Lett. 2007, 7, 2.
[39]E. Aleksandrova, R. Hiesgen, K. A. Friedrich, E. Roduner, Phys. Chem. Chem. Phys. 2007, 9, 2735.
[40]X. Xie, O. Kwon, D. M. Zhu, J. Phys. Chem. B 2007, 111, 22.
[41]R. Hiesgen, S. Helmly, I. Galm, T. Morawietz, M. Handl, K. A. Fridrich, Membranes 2012, 2, 783.
[42]R. Hiesgen, S. Helmly, T. Morawietz, X. Z. Yuan, W. Haijiang, K. A. Fridrich, Electrochim. Acta 2013, 110, 292.
[43]R. Hiesgen, T. Morawietz, M. Handl, M. Corasaniti, K. A. Fridrich, J. Electrochem. Soc. 2014, 12, F1214.
[44]N. Takimoto, W. Libin, A. Ohira, Y. Takeoka, M. Rikukawa, Polymer 2009, 50, 534.
[45]E. Carone Jr, U. Kopcak, M. C. Goncavles, S. P. Nunes, Polymer 2000, 41, 5929.
[46]K. D. Kreuer, J. Membr. Sci. 2001, 185, 29.
[47]T. J. Peckham, S. Holdcroft, Adv. Mater. 2010, 22, 4667.
[48]J. Lobato, P. Canizares, M. A. Rodrigo, J. J. Linares, F. J. Pinar, Int. J. Hydrogen Energy 2010, 35, 1347.
[49]M. Khiterer, D. A. Loy, C. J. Cornelius, C. H. Fujimoto, J. H. Small, T. M. McIntire, K. J. Shea, Chem. Mater. 2006, 18, 16.
[50]J. W. Lee, D. Y. Lee, H. J. Kim, S. Y. Nam, J. J. Choi, J. Y. Kim, J. H. Jang, E. Cho, S. K. Kim, S. A. Hong, T. H. Lim, J. Membr. Sci. 2010, 357, 130.
[51]https://www.bruker.com/
[52]B.V. Derjaguin, V.M. Muller, Y.P. Toporov, J. Colloid Interface Sci. 1975, 53, 314.

QR CODE