簡易檢索 / 詳目顯示

研究生: 徐銘均
Ming-Chun Hsu
論文名稱: 應用於超寬頻系統之射頻前端電路晶片設計
RF CMOS Front-End Chip Design for Ultra-Wideband Applications
指導教授: 黃進芳
Jhin-Fang Huang
劉榮宜
Ron-Yi Liu
口試委員: 徐敬文
Ching-Wen Hsue
江正雄
Jen-Shiun Chiang
黃弘一
Hong-Yi Huang
學位類別: 碩士
Master
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2008
畢業學年度: 96
語文別: 英文
論文頁數: 153
中文關鍵詞: 超寬頻前端電路射頻積體電路
外文關鍵詞: RFIC, UWB, Front-End
相關次數: 點閱:222下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

超寬頻(UWB)是一項可應用於近距離、高速的新興通訊技術,近幾年來更是受到學界和業界的高度青睞。因此,相關的研究變得越來越受歡迎。而本篇論文則著眼於超寬頻應用之射頻前端電路設計。
射頻前端電路在無線通訊接收機中扮演著重要的角色,負責將天線接收下來的微弱訊號放大並維持最小的雜訊為原則。而功率消耗、寬頻輸入阻抗的匹配、雜訊指數和轉換增益都是設計射頻前端電路時的考量因子,然而這些考量因子之間彼此相互衝突所以必須做適當的取捨。在這次的設計中,提出四種不同架構的超寬頻低雜訊放大器和兩種不同架構的射頻前端電路,分別操作於3.1到4.8 GHz和3.1到10.6 GHz的頻帶範圍。
此論文中所設計的晶片皆是使用台灣積體電路製造股份有限公司所提供的0.18微米互補式金氧半導體製程,並且完成所有晶片的製作與量測。


Ultra-wideband (UWB) communication is an emerging technology which has attracted great interests in both academia and industry in the past few years for applications in short-range and high-speed wireless mobile system. Therefore, the correlative researches became more and more popular. In this thesis, the focus of research is to design the RF receiver front-end for UWB applications.
The RF front-end plays an important role in wireless communication receiver and is usually used for amplifying the weak signal after the receiving antenna with minimized noise contribution. Power consuming, broadband input impedance matching, noise figure, and conversion gain, are the major issues to be considered in this design. It is well-known that these issues are trade-offs one another. In our work, the four kinds of UWB low noise amplifier structures and two kinds of UWB front-end structures are designed to cover 3.1 to 4.8 GHz and 3.1 to 10.6 GHz frequency range respectively.
The chip designs are used in TSMC CMOS 1P6M 0.18-um process and completely fabricated and measured.

論文摘要 Ⅰ ABSTRACT Ⅱ 致謝 Ⅲ CONTENTS Ⅳ LIST OF FIGURES Ⅵ LIST OF TABLES XI CHAPTER 1 Introduction 1 1.1 Motivation 1 1.2 Challenge and Goal 3 1.3 Organization 4 CHAPTER 2 Ultra-Wideband System Architecture 5 2.1 Historical Perspective 5 2.2 Ultra-Wideband System 6 2.2.1 DS-CDMA System 6 2.2.2 MB-OFDM System 7 2.3 Receiver Architecture 9 2.3.1 Heterodyne Architecture 9 2.3.2 Low-IF Architecture 10 2.3.3 Homodyne Architecture 11 CHAPTER 3 Basic Concepts 14 3.1 CMOS Process Introduction 14 3.1.1 RF MOS Device 14 3.1.2 Inductor 15 3.1.3 Capacitor 16 3.1.4 Resistor 16 3.1.5 Transformer 17 3.2 Paper Survey 18 3.2.1 Conventional Ultra-Wideband LNA Architecture 18 3.2.2 Conventional Ultra-Wideband Mixer Architecture 23 3.3 The Fundamental of Receiver Front-End 24 3.3.1 Conventional Input Matching Topology 25 3.3.2 Circuit Requirement 28 CHAPTER 4 Ultra-Widband Low-Noise Amplifier Chip Design 46 4.1 Introduction 46 4.2 Circuit Design 47 4.2.1 Resistive Shunt-Feedback Technique 47 4.2.2 Inductive Shunt-Peaking and Series-Peaking Technique 48 4.2.3 π-section Inter-stage Matching Technique 53 4.3 Layout and Measurement Consideration 55 4.4 3 to 6 GHz Ultra-Wideband Low Noise Amplifier 58 4.4.1 Introduction 58 4.4.2 Noise Analysis 58 4.4.3 Implementation and Measurement 62 4.5 0.8 to 6 GHz High Gain Low Noise Amplifier and 0.8 to 11 GHz Broadband Low Noise Amplifier 69 4.5.1 Introduction 69 4.5.2 Noise Analysis 69 4.5.3 Implementation and Measurement 74 4.6 Inductorless Ultra-Wideband Low Noise Amplifier with Noise Cancellation 87 4.6.1 Introduction 87 4.6.2 Noise Analysis 87 4.6.3 Implementation and Measurement 92 4.7 Conclusion 100 CHAPTER 5 Ultra-Wideband RF Front-End Chip Design 101 5.1 Introduction 101 5.2 Circuit Design 103 5.2.1 Down-converting Analysis 103 5.2.2 Noise Optimization 106 5.2.3 Current Bleeding Technique 108 5.3 Layout and Measurement Consideration 109 5.4 3.1 to 4.8 GHz Ultra-Wideband Receiver Front-End 113 5.4.1 Introduction 113 5.4.2 Implementation and Measurement 114 5.5 3.1 to 10.6 GHz Ultra-Wideband Receiver Front-End 121 5.5.1 Introduction 121 5.5.2 Implementation 122 5.6 Conclusion 132 CHAPTER 6 Conclusions and Future Work 132 6.1 Conclusions 133 6.2 Future Work 134

[1] C.W. Kim, M.S. Kang, P.T. Anh, H.T. Kim, and S.G. Lee, “An Ultra-Wideband CMOS Low Noise Amplifier for 3-5 GHz UWB System,” IEEE J. Solid-State Circuits, vol. 40, no. 2, pp. 544-547, Feb. 2005.
[2] Z. Hong, and C. Guican, “Analysis and Design of a CMOS Low Noise Amplifier for 3-5 GHz UWB Systems,” Microwave and Millimeter Wave Technology, International Conference on 18-21, pp.1-4, April 2007.
[3] D. Heechan, J. Youngkyun, J. Sungyong, and J. Youngjoong, “Design of CMOS UWB Low Noise Amplifier with Cascode Feedback,” IEEE International Midwest Symposium on Circuit and Systems, vol. 2, pp. II-641-II-644, July 2004.
[4] S. C. Chen, R. L. Wang, M. L. Kung, and H. C. Kuo, “An Integrated CMOS Low Noise Amplifier for 3-5 GHz UWB Applications”, IEEE Electron Device and Solid-State Circuits Conference, pp. 225-228, Dec. 2005.
[5] A. Bevilacqua, C. Sandner, A. Gerosa, and Neviani, “A Fully Integrated Differential CMOS LNA for 3–5-GHz Ultrawideband Wireless Receivers,” IEEE MICROWAVE AND WIRELESS COMPONENTS LETTERS, vol. 16, no. 3, pp. 134-136, mar. 2006.
[6] Chang, and Chuang, “0.18 μm 3–6 GHz CMOS Broadband LNA for UWB Radio,” Electronics Letters, vol. 41, no.12, pp. 696-698, Jun. 2005.
[7] C. P. Chang, C. C. Yen, and H. R. Chuang, “A 1-V, 6-mA, 3–6 GHz Broadband 0.18-um CMOS Low Noise Amplifier For UWB Receiver,” MICROWAVE AND OPTICAL TECHNOLOGY LETTERS, vol. 49, no. 6, Jun. 2007.
[8] H. J. Lee1, D. S. Ha1, S. S. Choi, “A 3 to 5GHz CMOS UWB LNA with Input Matching Using Miller Effect,” Solid-State Circuits, 2006 IEEE International Conference Digest of Technical Papers Feb. 6-9, pp. 731 - 740, Feb 2006.
[9] K. Chung, T.Yun, J. Choi, J. Jung, “Ultra-Wideband Low Noise Amplifier Using a Cascode Feedback Topology,” Silicon Monolithic Integrated Circuits in RF Systems, pp. 202-205, Jan 2006.
[10] Guarda, C. Cui, X. Lin, P. C. Doo, S.J. Zhang, P. Ismail, “A 3-5 GHz Fully Differential CMOS LNA with Dual Gain Mode for Wireless UWB Applications,” Proc. IEEE Midwest Symp on Circuits and Systems, pp. 790-793. Jan. 2005.
[11] B. Y. Chang, C. Jou, “Design of a 3.1-10.6GHz Low-Voltage, Low-Power CMOS Low-Noise Amplifier for Ultra-wideband Receivers,” Proc. AP Microwave Conf. Jun. 2005.
[12] A .Bevilacqua and A. Niknejad, “An Ultra-Wideband CMOS LNA for 3.1 to 10.6 GHz Wireless Receivers,” in Int. Solid-State Circuits Conf. Tech. Dig., pp. 382-383, Feb. 2004.
[13] C.-T. Fu and C.-N. Kuo, “3–11-GHz CMOS UWB LNA Using Dual Feedback for Broadband Matching,” Proc. IEEE RFIC Symp, San Francisco, CA, pp. 67–70, Jun. 2007.
[14] Yi-Jing Lin, Shawn S. H. Hsu, Jun-De Jin, and C. Y. Chan, “A 3.1–10.6 GHz Ultra-Wideband CMOS Low Noise Amplifier with Current-Reused Technique,” IEEE MICROWAVE AND WIRELESS COMPONENTS LETTERS, vol. 17, no. 3, Mar. 2007.
[15] C. F. Liao, and S. I. Liu, “A Broadband Noise-Canceling CMOS LNA for 3.1–10.6-GHz UWB Receiver,” IEEE 2005 CUSTOM INTEGRATED CIRCUITS CONFERENCE, art. no. 1568632, pp. 160-163. Jan. 2005.
[16] K.H. Chen, J.H. Lu, B.J. Chen, and S.I. Liu, “An Ultra-Wide-Band 0.4–10-GHz LNA in 0.18-um CMOS,” IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS, vol. 54, no. 3, mar. 2007.
[17] M.F. Chou, W.S. Wuen, C. C. Wu, C. Y. Chang, “A CMOS Low-Noise Amplifier for Ultra Wideband Wireless Applications,” IEICE TRANS. FUNDAMENTALS, vol. E88–A, no.11, Nov. 2005.
[18] X. Fan, S. Sinencio, and S. Martinez , “A 3GHz-10GHz Common Gate Ultra Wideband Low Noise Amplifier,” Midwest Symposium circuits and Systems, 631 - 634 vol. 1, Aug. 2005.
[19] Y. T. Lin, H. C. Chen, T. Wang, Y. S. Lin, S. S. Lu, “3–10-GHz Ultra-Wideband Low-Noise Amplifier Utilizing Miller Effect and Inductive Shunt–Shunt Feedback Technique,” IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, vol. 55, no. 9, Sep. 2007.
[20] W. Ro-Min, and L. Po-Cheng, “A 1.5-V Low-Power Common-Gate Low Noise Amplifier for Ultra wideband Receivers,” IEEE International Symposium on Circuits and Systems, pp. 2618-2621, May 2007.
[21] A. Safarian, A. Yazdi, P. Heydari, “Design and Analysis of an Ultra-Wideband Distributed CMOS Mixer,” IEEE Transactions on VLSI systems, vol. 13, no. 5, pp. 618-629, May. 2005.
[22] R.C. Liu, et al., “Design and Analysis of DC to 14GHz and 22GHz CMOS Cascode Single-Stage Distributed Amplifiers,” IEEE Trans. Microwave Theory Tech., vol. 48, pp. 2657-2663, Dec. 2000.
[23] Payam Heydari, and Denis Lin, “A Performance Optimized CMOS Distributed LNA for UWB Receivers,” IEEE 2005 Custom Integrated Circuits Conference, pp. 337-340, Sept. 2005.
[24] R. C. Liu, K.L. Deng, and H. Wang, “A 0.6 – 22 GHz Broadband CMOS Distributed Amplifier,” in Proc. IEEE Radio Frequency Integrated Circuits (RFIC) Symp., pp. 103-106, June, 2003
[25] K.H. Chen, C.K. Wang, “ A 3.1-10.6 GHz CMOS Cascaded Two-Stage Distributed Smplifier for Ultra-Wideband Application,” Advanced System Integrated Circuits 2004. Proceedings of 2004 IEEE Asia-Pacific Conference on 4-5, pp. 296-299, Aug. 2004.
[26] Stephan C. Blaakmeer, Eric A.M. Klumperink, Domine M.W. Leenaerts, and Bram Nauta, “A Wideband Noise Canceling CMOS LNA Exploiting a Transformer”, IEEE Radio Frequency Integrated Circuits (RFIC) Symposium, June, 2006.
[27] Bruccoleri, F., Klumperink, E.A.M., and Nauta, B, “Wide-band CMOS Low-Noise Amplifier Exploiting Thermal Noise Canceling,” IEEE J. Solid-State Circuits,, vol. 39, pp. 275-282, Feb. 2004.
[28] Ming-Da Tsai; Huei Wang;., “A 0.3-25-GHz Ultra-Wideband Mixer Using Commercial 0.18-μm CMOS Technology,” Microwave and Wireless Components Letters, vol. 14, Issue 11, Nov. 2004.
[29] C.H. Wu, C.H. Lee, W.S. Chen, and S.I. Liu, “CMOS Wideband Amplifiers Using Multiple Inductive-Series Peaking Technique,” IEEE JSSC, vol. 40, no. 2, Feb. 2005.
[30] S. Emami, C. H. Doan, A. M. Niknejad, and R.W. Brodersen, “Large Signal Millimeter Wave CMOS Modeling with BSIM3,” RFIC Symposium, 2004. Digital of papers. pp. 720, June. 2004.
[31] John R. Long, “Monolithic Transformers for Silicon RF IC Design,” IEEE JSSCC, vol. 35, no. 9, Sep. 2000.
[32] S. G. Lee, and J. K. Choi, “Current-Reuse Bleeding Mixer,” Electronics letters 13th, vol.36, no. 8, April. 2000.
[33] S.R. Karri, M. A. Arasu, K. W. Wong, Y. Zheng, and F. Lin, “Low-Power UWB LNA and Mixer using 0.18-μm CMOS Technology,” IEEE Solid-State Circuits Conference, pp. 259 - 262, Sep. 2006.
[34] J. Paek, B. Park, and S. Hong, “A 3-5 GHz RF Receiver Front-End for UWB Wireless System,” IEEE the 36th European Microwave Conference, pp. 1511 – 1514, Sep. 2006.
[35] Hong Zhang, Guican Chen, Xiao Yang, ”Fully differential CMOS LNA and Down-Conversion Mixer for 3-5 GHz MB-OFDM UWB Receivers,” IEEE international Workshop on Radio-Frequency Integration Technology. Dec. 2007.
[36] Y.A Shim, J.Lee, S. K. Han, and S.G. Han, “Low Noise RF Front-End Receiver for 3-5 GHz UWB,” Advanced Communication Technology, ICACT 2008. 10th International Conference, pp.823-826, vol. 1, Feb. 2008.
[37] A. Safarian, L.Zhou, and P. Heydari, “A Distributed RF Front-End for UWB Receiver,” IEEE 2006 CICC, pp. 805-808. Sept. 2006.
[38] Bo Shi, and Michael Yan Wah Chia, “A CMOS Receiver Front-End for 3.1-10.6 GHz Ultra-Wideband Radio,” Radio Frequency Integrated Circuit Symposium, pp. 350-353, Sept. 2006.
[39] Bo Shi, and Michael Yan Wah Chia, “A 3.1 – 10.6 GHz Front-End for Multi-Band UWB Wireless Receivers,” Radio Frequency Integrated Circuit Symposium, pp. 343-346, June. 2005.
[40] Wang ziqiang, Zhang chun, Wang Zhihua, “Wireless Receiver Architectures for SOC,” ASIC, 2003. Proceedings of 5th International Conference, vol. 2, pp. 877-881, Oct. 2003.
[41] T. H. Lee, The Design of CMOS Radio-Frequency Integrated Circuits, 1st ed. New York: Cambridge Univ. Press, 1998.
[40] B. Razavi, Design of Analog CMOS Integrated Circuit, McGraw Hill, 1996.
[41] 張國慶,應用於超寬頻3.1-10.6GHz無線接收端之疊接回授架構與低功率電流再使用架構之低雜訊放大器之設計,國立交通大學電子工程研究所碩士論文,中華民國九十五年六月。
[42] 賴照民,新穎的金氧半電晶體雜訊模型與應用於超寬頻系統低雜訊放大器之設計,國立交通大學電子工程研究所碩士論文,中華民國九十四年七月。
[43] 徐達道,應用於超寬頻系統之低功率主動性相位分離器與混波器之設計,國立交通大學電子工程研究所碩士論文,中華民國九十五年六月。
[44] 詹豪傑,24GHz互補式金氧半導體電流操作模式射頻前端接收器之設計,國立交通大學電子工程研究所碩士論文,中華民國九十五年六月。
[45] 陳暘元,超寬頻接收機之射頻前端電路設計,大同大學電機工程研究所碩士論文,中華民國九十五年六月。
[46] 楊志偉,低電壓低功率2.4GHz CMOS射頻前端電路,大同大學電機工程研究所碩士論文,中華民國九十二年七月。

無法下載圖示 全文公開日期 2013/07/29 (校內網路)
全文公開日期 本全文未授權公開 (校外網路)
全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
QR CODE