簡易檢索 / 詳目顯示

研究生: 周冠學
Kuan-Hsueh Chou
論文名稱: 預設模式網路與非預設模式網路間的代謝物濃度比較
Comparison of metabolite concentrations between default mode network and non-default mode network
指導教授: 林益如
Yi-Ru Lin
口試委員: 黃騰毅
Teng-Yi Huang
吳文超
Wen-Chau Wu
蔡尚岳
Shang-Yueh Tsai
林益如
Yi-Ru Lin
學位類別: 碩士
Master
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2020
畢業學年度: 108
語文別: 中文
論文頁數: 47
中文關鍵詞: 靜息態網路靜息態功能性磁振造影面回訊頻譜影像預設模式網路代謝物濃度
外文關鍵詞: resting state network, resting state functional magnetic resonance imaging, echo planar spectroscopy imaging, default mode network, metabolite concentration
相關次數: 點閱:184下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 靜息態功能性磁振造影(rsfMRI)可以用來量測神經元活動所引發的血氧濃度相依(BOLD)對比的變化,而在過去研究中也找到多種由不同腦區所組成的靜息態網路,當人處於休息狀態且沒有特定任務或刺激時,靜息態網路區域的神經元活動會特別活躍,其中預設模式網路(DMN)被證實為穩定且在大部分人腦中皆可以找到的靜息態網路,而腦區內的神經元活動與代謝物關係密切,因此論文中對於預設模式網路與非預設模式網路之間的代謝物濃度是否有所差異進行分析,實驗中共收集了30位受試者的資料,並結合其靜息態功能性磁振造影與面回訊頻譜影像(EPSI),來比較預設模式網路區域與非預設模式網路區域(non-DMN)中的五種代謝物(NAA、Cre、Cho、mI、Glx),研究結果以三個方法,共六個遮罩作計算分析,發現代謝物NAA和Cre與非預設模式網路區域相比,在覆蓋內側前額葉皮質(mPFC)、後扣帶回皮質(PCC)以及楔前葉(precuneus)的預設模式網路區域都顯示出較高的濃度基線。最後研究發現,代謝物NAA、Cre在預設模式網路區域與非預設模式網路區域發現有明顯的差異,但代謝物NAA會受不同方法的影響,較為不穩定。


    Resting state functional magnetic resonance imaging (rsfMRI) can be used to measure the change in blood oxygen level-dependent (BOLD) contrast caused by neuronal activity. In previous studies, many resting state network composed of different brain regions have been found. When the person is at rest, and there is no specific task or stimulation, the neuron activity in the resting state network regions will be particularly active. Among all resting state network, the default mode network (DMN) has been proved to be stable and can be found when the human brain is resting. In addition, the neuron activity in the brain regions is closely related to metabolites. In this study, we analyze whether there is a difference in the metabolite concentration between DMN and the non-DMN. Data were collected from 30 subjects in the experiment, combining rsfMRI and echo planar spectroscopy imaging (EPSI) techniques to compare the five metabolites (NAA, Cre, Cho, mI, Glx) concentration between DMN and the non- DMN. The results are calculated by six masks. We found that NAA and Cre show higher baseline levels in DMN region covering part of medial prefrontal cortex, posterior cingulate cortex and precuneus than in non-DMN region. The concentrations of NAA and Cre are significant differences in DMN region and non-DMN region, but NAA is affected by different methods and is relatively unstable.

    ABSTRACT...i 摘要...ii 目錄...iii 圖目錄...iv 表目錄...vi 第1章 簡介...1 1.1 功能性磁振造影...1 1.2 靜息態網路...2 1.3 磁共振頻譜...3 1.4 動機與目標...4 第2章 方法與材料...5 2.1 實驗參數...6 2.2 EPI資料前處理...7 2.3 後處理...8 2.3.1 REST和空間轉換...8 2.3.2 MRS資料處理...12 第3章 實驗結果...13 3.1 DMN區域與non-DMN區域的分佈...13 3.2 統計分析...22 第4章 討論與結論...33 參考文獻...37

    1.Biswal, B., et al., Functional connectivity in the motor cortex of resting human brain using echo‐planar MRI. Magnetic resonance in medicine, 1995. 34(4): p. 537-541.
    2.Raichle, M.E., et al., A default mode of brain function. Proceedings of the National Academy of Sciences, 2001. 98(2): p. 676-682.
    3.Wright, A.J., et al., Pattern recognition of MRSI data shows regions of glioma growth that agree with DTI markers of brain tumor infiltration. Magnetic Resonance in Medicine: An Official Journal of the International Society for Magnetic Resonance in Medicine, 2009. 62(6): p. 1646-1651.
    4.Nelson, S.J., D.B. Vigneron, and W.P. Dillon, Serial evaluation of patients with brain tumors using volume MRI and 3D 1H MRSI. NMR in Biomedicine: An International Journal Devoted to the Development and Application of Magnetic Resonance In Vivo, 1999. 12(3): p. 123-138.
    5.Karaszewski, B., et al., Measurement of brain temperature with magnetic resonance spectroscopy in acute ischemic stroke. Annals of neurology, 2006. 60(4): p. 438-446.
    6.Wardlaw, J.M., et al., Studies of acute ischemic stroke with proton magnetic resonance spectroscopy: relation between time from onset, neurological deficit, metabolite abnormalities in the infarct, blood flow, and clinical outcome. Stroke, 1998. 29(8): p. 1618-1624.
    7.Rooney, W., et al., 1H MRSI of normal appearing white matter in multiple sclerosis. Multiple Sclerosis Journal, 1997. 3(4): p. 231-237.
    8.Sharma, R., P.A. Narayana, and J.S. Wolinsky, Grey matter abnormalities in multiple sclerosis: proton magnetic resonance spectroscopic imaging. Multiple Sclerosis Journal, 2001. 7(4): p. 221-226.
    9.Adalsteinsson, E., et al., Longitudinal decline of the neuronal marker N-acetyl aspartate in Alzheimer's disease. The Lancet, 2000. 355(9216): p. 1696-1697.
    10.Ide, M., S. Naruse, and S. Furuya, 1H-MRSI of Alzheimer's disease. Nihon rinsho. Japanese journal of clinical medicine, 1997. 55(7): p. 1768-1773.
    11.Tedeschi, G., et al., Proton magnetic resonance spectroscopic imaging in progressive supranuclear palsy, Parkinson's disease and corticobasal degeneration. Brain: a journal of neurology, 1997. 120(9): p. 1541-1552.
    12.Hattingen, E., et al., Phosphorus and proton magnetic resonance spectroscopy demonstrates mitochondrial dysfunction in early and advanced Parkinson's disease. Brain, 2009. 132(12): p. 3285-3297.
    13.Ruocco, H.H., et al., Evidence of thalamic dysfunction in Huntington disease by proton magnetic resonance spectroscopy. Movement disorders: official journal of the Movement Disorder Society, 2007. 22(14): p. 2052-2056.
    14.Reynolds Jr, N.C., R.W. Prost, and L.P. Mark, Heterogeneity in 1H-MRS profiles of presymptomatic and early manifest Huntington's disease. Brain research, 2005. 1031(1): p. 82-89.
    15.Lin, F.H., et al., Sensitivity‐encoded (SENSE) proton echo‐planar spectroscopic imaging (PEPSI) in the human brain. Magnetic Resonance in Medicine: An Official Journal of the International Society for Magnetic Resonance in Medicine, 2007. 57(2): p. 249-257.
    16.Tsai, S.Y., et al., Accelerated proton echo planar spectroscopic imaging (PEPSI) using GRAPPA with a 32‐channel phased‐array coil. Magnetic Resonance in Medicine: An Official Journal of the International Society for Magnetic Resonance in Medicine, 2008. 59(5): p. 989-998.
    17.Tsai, S.-Y., et al., Short-and long-term quantitation reproducibility of brain metabolites in the medial wall using proton echo planar spectroscopic imaging. Neuroimage, 2012. 63(3): p. 1020-1029.
    18.Gusnard, D.A., et al., Medial prefrontal cortex and self-referential mental activity: relation to a default mode of brain function. Proceedings of the National Academy of Sciences, 2001. 98(7): p. 4259-4264.
    19.Levar, N., et al., Anterior cingulate GABA and glutamate concentrations are associated with resting-state network connectivity. Scientific reports, 2019. 9(1): p. 1-8.
    20.Stagg, C.J., et al., Local GABA concentration is related to network-level resting functional connectivity. Elife, 2014. 3: p. e01465.
    21.Brown, C.A., et al., Age and Alzheimer's pathology disrupt default mode network functioning via alterations in white matter microstructure but not hyperintensities. Cortex, 2018. 104: p. 58-74.
    22.Brown, C.A., et al., Distinct patterns of default mode and executive control network circuitry contribute to present and future executive function in older adults. NeuroImage, 2019. 195: p. 320-332.
    23.Maudsley, A.A., et al., Mapping of brain metabolite distributions by volumetric proton MR spectroscopic imaging (MRSI). Magnetic Resonance in Medicine: An Official Journal of the International Society for Magnetic Resonance in Medicine, 2009. 61(3): p. 548-559.
    24.Inglese, M., et al., Global average gray and white matter N-acetylaspartate concentration in the human brain. Neuroimage, 2008. 41(2): p. 270-276.

    無法下載圖示 全文公開日期 2025/07/13 (校內網路)
    全文公開日期 2025/07/13 (校外網路)
    全文公開日期 2025/07/13 (國家圖書館:臺灣博碩士論文系統)
    QR CODE