簡易檢索 / 詳目顯示

研究生: 徐嘉儀
Jia-Yi Xu
論文名稱: 頻率調變連續波之光達速度量測
LiDAR Velocity Characterization through Frequency- Modulated Continuous Wave
指導教授: 徐世祥
Shih-Hsiang Hsu
口試委員: 李志堅
Chih-Chien Lee
林敬舜
ChingShun Lin
林保宏
Pao-hung Lin
學位類別: 碩士
Master
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2023
畢業學年度: 111
語文別: 中文
論文頁數: 92
中文關鍵詞: 光學雷達希爾伯特轉換
外文關鍵詞: LiDAR, Hilbert transform
相關次數: 點閱:138下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

近年來,光學雷達 (Light Detection And Ranging, LiDAR) 技術不斷成長與突破,在科技領域中迅速發展。此技術在自動駕駛、無人機導航與安全監控等領域被廣泛應用,為我們生活帶來了許多便利性與安全性。目前在 LiDAR 感測器技術研究上,常見之系統有兩種為頻率調變連續波 (Frequency-Modulated Continuous Wave, FMCW) 與飛時測距 (Time of Flight, ToF),而 FMCW LiDAR 具有較高之解析度與較長之工作距離,並且在環境抗噪能力與精準度上也有較好之表現。但由於 FMCW LiDAR 系統體積龐大以及需要更高之光源要求,使其在消費性電子產品應用受到限制,因此難以商業化量產。為改善其問題,目前 FMCW LiDAR 量測速度之研究團隊主要分為兩種,第一種為使用修正之光源進行量測,但此方法會使得系統複雜且昂貴,目前有研究團隊利用任意波形產生器 (Arbitrary Waveform Generators, AWG) 結合分佈式回饋布拉格 (Distributed Feedback Bragg, DFB) 光柵光源進行量測,其實驗主要專注於將光源通過疊代法不斷優化,以改善非線性現象。但此量測方法會導致物體測量時間增加,由於疊代法需要進行多次反覆優化步驟,因此若在複雜之雷射非線性時,需要相對較長時間才能將光源收斂至可用於量測之狀態。另一種為使用輔助干涉儀重採樣進行速度之量測,目前研究量測之速度皆低於 10 mm/s,對於目前商業化之產品應用較不足夠。由於 LiDAR 產品主要使用在即時量測系統,若計算時間過長會造成無法取得即時資訊,本實驗研究為不改變光源之情況下,提高量測速度與縮小系統體積,提升其在市面上之競爭力。
​本論文系統主要為利用 FMCW LiDAR 量測物體移動之速度,詳細介紹系統所使用之量測方法與計算方式。為了後續將此系統積體化,文中也介紹了矽光子耦合元件、矽光子分光器與 PIN 光偵測器之製程步驟。由 FMCW LiDAR 量測實驗證明,由於步進馬達產生之振動影響巨大,靜態座標系與動態座標系兩者之瞬時頻率變化趨勢不同,從而無法利用輔助干涉儀重採樣量測較高之物體移動速度。本論文發現若利用主要干涉儀之Hilbert Transformation進行重採樣,可提高量測之速度。實驗顯示光纖系統之量測速度為 200 mm/s 時,速度誤差為 1.097 mm/s,標準差可達 0.190 mm/s。當將主要干涉儀更換為矽光波導之50:50馬赫-曾德爾定向耦合器 (Mach-Zehnder Direction Coupler, MZDC)之分光能量器,此部分系統積體化之實驗結果得到量測速度為 200 mm/s 時,速度誤差為 1.378 mm/s,則標準差為 0.200 mm/s。


In recent years, Light Detection and Ranging (LiDAR) technology has been growing and advancing rapidly in the field of technology. It has been widely applied in various areas, such as autonomous driving, drone navigation, and safety monitoring, bringing convenience and security to our lives. Currently, there are two standard LiDAR sensing techniques: Frequency-Modulated Continuous Wave (FMCW) and Time of Flight (ToF). FMCW LiDAR offers higher resolution, more extended range, and better environmental noise resistance and accuracy performance. However, the bulky size and higher light source requirements of FMCW LiDAR systems limit their commercial mass production and consumer electronic applications. To address these challenges, current research teams working on FMCW LiDAR velocity measurements mainly focus on two approaches. The first approach involves correcting light sources in the experimental system to characterize the velocity. However, this approach makes the system complex and expensive. Currently, some research teams use arbitrary waveform generators (AWG) combined with distributed feedback Bragg (DFB) gratings in the light source to improve non-linear phenomena through iterative optimization for the velocity test. This method increases the object measurement time because of multiple optimization iterations. Therefore, it takes a relatively long time to converge the light source to a suitable state for FMCW velocity measurements when dealing with complex laser non-linearities. The second approach utilizes auxiliary interferometers for resampling in the velocity test. However, the research teams only achieve velocities below ten mm/s, which is insufficient for commercial product applications. Therefore, our study aims to improve the measurement velocity and reduce the system size to enhance its competitiveness in the market.
​This thesis focuses on using FMCW LiDAR to characterize the velocity of moving objects and provides detailed explanations of measurement methodologies and calculation procedures employed in the system. We also demonstrate the coupling elements in silicon photonics, silicon-waveguide splitters, and PIN photodetectors to enable future chip integration. The FMCW LiDAR velocity test experiments illustrate that the significant vibrations generated by the stepping motor result in different instantaneous frequency variations between the static and dynamic coordinate systems. Consequently, using auxiliary interferometers for resampling to measure objects in high velocities is not feasible. This thesis proposes to utilize the main interferometer in resampling through Hilbert transformation for FMCW velocity tests. The experimental results of the fiber optic system reveal that at a measurement velocity of 200 mm/s, the velocity error is 1.097 mm/s, and the standard deviation is 0.190 mm/s. For the system size reduction, the fiber optic coupler in the main interferometer is replaced with a 50:50 splitting ratio of Mach-Zehnder Direction Coupler (MZDC) in a silicon platform. The chip-based FMCW velocity system shows that at a measurement velocity of 200 mm/s, the velocity error is 1.378 mm/s, and the standard deviation is 0.200 mm/s.

摘要 Abstract​ 致謝​ 目錄​ 圖目錄​ 表目錄​ 第一章 緒論​ 1.1 研究背景​ 1.2 研究動機​ 1.3 論文架構​ 第二章 FMCW 理論介紹​ 2.1 FMCW LiDAR 量測靜止目標之理論​ 2.2 FMCW LiDAR 量測移動目標之理論​ 第三章 頻率調變雷射非線性現象​ 3.1 頻率調變雷射非線性現象成因​ 3.2 改善雷射非線性現象​ 3.3 Hilbert transform 相位檢測法​ 3.4 如何利用 Hilbert transform 相位檢測法找其重採樣之點數​ 3.5 非線性訊號如何利用主要/輔助干涉儀進行重新採樣​ 第四章 矽光子積體電路元件 4.1 矽光子波導結構​ 4.2 矽光子波導模態 4.3 光波導耦合元件​ 4.3.1 邊緣耦合 (Edge Coupling)​ 4.3.2 光柵耦合 (Grating Coupling)​ 4.3.3 設計與修正光柵耦合器之影響​ 4.4 光波導分光元件​ 4.4.1 定向耦合器 (Directional Coupler)​ 4.4.2 馬赫-曾德爾定向耦合器 (Mach-Zehnder Directional Coupler, MZDC)​ 第五章 1.25Gbps PIN 光偵測器製程​ 5.1 PIN 光偵測器原理​ 5.2 PIN 光偵測器製程設計​ 5.3 PIN 光偵測器製程​ 5.4 PIN 光偵測器量測系統​ 5.5 PIN 光偵測器量測結果​ 第六章 量測系統與實驗結果分析​ 6.1 輔助干涉儀量測物體移動之速度​ 6.2 物體移動產生之振動分析​ 6.3 主要干涉儀量測物體移動之速度​ 6.4 晶片型耦合量測物體移動之速度​ 第七章 結論與未來展望​ 7.1 結論​ 7.2 未來展望​ 參考文獻​

[1] T. DiLazaro and G. Nehmetallah, “Large-volume, low-cost, high-precision FMCW tomography using stitched DFBs,” Opt. Express, Vol. 26, Issue 3, pp. 2891-2904, 2018.
[2] C. C. Williams and H. K. Wickramasinghe, “Absolute optical ranging with 200-nm resolution,” Opt. Lett., Vol. 14, Issue 11, pp. 542-544, 1989.
[3] R. H. Rasshofer, M. Spies, and H. Spies, “Influences of weather phenomena on automotive laser radar systems,” Adv. Radio Sci., Vol. 9, pp. 49-60, 2011.
[4] B.A. Mamyrin, “Time-of-flight mass spectrometry (concepts, achievements, and prospects),” Int. J. Mass spectrom, Vol. 206, Issue 3, pp. 251-266, 2001.
[5] G. Chen, C. Wiede and R. Kokozinski, “Data processing approaches on SPAD-Based d-TOF LiDAR systems: a review,” IEEE Sens. J., vol. 21, Issue 5, pp. 5656-5667, 2021.
[6] J. Liu, Q. Sun, Z. Fan, and Y. Jia, “TOF Lidar development in autonomous Vehicle,” IEEE Opt., Vol. 21, Issue 5, pp. 185-190, 2018.
[7] D. N. Hutchison, J. Sun, J. K. Doylend, R. Kumar, J. Heck, W. Kim, C. T. Phare, A. Feshali, and H. Rong, “High-resolution aliasing-free optical beam steering,” Optica, Vol.3, pp. 887-890, 2016.
[8] C. V. Poulton, P. Russo, E. Timurdogan, M. Whitson, M. J. Byrd, E. Hosseini, B. Moss, Z. Su, D. Vermeulen, and M. R. Watts, “High-performance integrated optical phased arrays for Chip-Scale beam steering and LiDAR,” CLEO, p. ATu3R.2, 2018.
[9] A. C. Lesina, D. Goodwill, E. Bernier, L. Ramunno, and P. Berini, “On the performance of optical phased array technology for beam steering: effect of pixel limitations,” Opt. Express, Vol. 28, Issue 21, pp. 31637-31657, 2020.
[10] B. L. Danielson and C. Y. Boisrobert, “Absolute optical ranging using low coherence interferometry,” Appl. Opt., Vol. 30, pp. 2975-2979, 1991.
[11] C. Lu, Z. Yu, and G. Liu, “A high-precision range extraction method using an FM nonlinear kernel function for DFB-array-based FMCW lidar,” Opt. Commun., Vol. 504, 127469, 2022.
[12] J. Hong, J. Lee, and K. Park, “Linear frequency sweeping control for LiDAR application,” IEEE ICCA, pp. 577-580, 2022.
[13] X. Cao, C. Li, K. Wu, J. Long, and J. Chen, “FMCW ranging and speed measurement based on frequency sweep predistortion of DFB laser,” CLEO, pp. 1-2, 2021.
[14] J. Xi, L. Huo, J. Li, and X. Li, “Generic real-time uniform K-space sampling method for high-speed swept-Source optical coherence tomography,” Opt. Express, Vol. 18, pp. 9511-9517, 2010.
[15] R. Huber, M. Wojtkowski, K. Taira, J. G. Fujimoto, and K. Hsu, “Amplified, frequency swept lasers for frequency domain reflectometry and OCT imaging: design and scaling principles,” Opt. Express, Vol. 13, pp. 3513-3528, 2005.
[16] L. Song, G. Shi, H. Liu, H. Lin, F. Zhang, and D. Sun, MDPI sens., “Phase unwrapping and frequency points subdivision of the frequency sweeping interferometry based absolute ranging system,” Vol. 22, Issue 8, pp. 2904, 2022.
[17] S. Jiang, B. Liu, H. Wang, and B. Zhao, “Absolute distance measurement using frequency-scanning interferometry based on Hilbert phase subdivision,” MDPI sens., Vol. 19, Issue 23, pp. 5132, 2019.
[18] F. Zhang, L. Yi, and X. Qu, “Simultaneous measurements of velocity and distance via a dual-path FMCW lidar system,” Opt. Commun., Vol. 474, pp. 126066, 2020.
[19] Z. Xu, H. Zhang, K. Chen, D. Zhu, and S. Pan, “FMCW Lidar using phase-diversity coherent detection to avoid signal aliasing,” IEEE Photon. Technol. Lett., vol. 31, Issue 22, pp. 1822-1825, 2019.
[20] Y. Zhai, Q. Liu, H. Li, D. Chen, and Z. He, “Non-mechanical beam-steer lidar system based on swept-laser source,” CLEO, pp. 1-2, 2018.
[21] M. Okano and C. Chong, “Swept Source Lidar: simultaneous FMCW ranging and nonmechanical beam steering with a wideband swept source,” Opt. Express, Vol. 28, Issue 16, pp. 23898-23915, 2020.
[22] T. Kim, “Realization of integrated coherent LiDAR,” UC Berkeley, 2019.
[23] J. J. Armstrong and D. Sampson, “Distance ranging to biological tissue using fibre-optic Fabry-Perot, short tuning range FMCW interferometry,” SPIE, Vol.4185, pp.366-369, 2000.
[24] C.Wolff, “Radar Basics,”https://www.academia.edu/30090107.
[25] G. Shi, W. Wang, F. Zhang, “Precision improvement of frequency-modulated continuous-wave laser ranging system with two auxiliary interferometers,” Optics Commun., Vol. 411, pp. 152-157, 2018.
[26] J. Xi, L. Huo, J. Li, and X. Li, “Generic real-time uniform K-space sampling method for high-speed swept-Source optical coherence tomography,” Opt. Express, Vol. 18, Issue 9, pp. 9511-9517, 2010.
[27] K. Iiyama, T. Washizuka, and K. Yamaguchi, “Three-dimensional object profiling by FMCW optical ranging system using a VCSEL,” CLEO, pp. 1-3, 2017.
[28] D. Gabor, “Theory of communication. Part 1: The analysis of information,” IET D. L., Vol. 93, Issue 26, pp. 429-441, 1944.
[29] T. J. Ahn, J. Y. Lee, D. Y. Kim, “Suppression of nonlinear frequency sweep in an optical frequency-domain reflectometer by use of Hilbert transformation,” Appl Opt., 7630, 2005.
[30] R. A. Soref, J. Schmidtchen, and K. Petermann, “Large single-mode rib waveguides in GeSi-Si and Si-on-SiO/sub 2/,” IEEE J. Quantum Electron., Vol. 27, Issue 8, pp. 1971-1974, 1991.
[31] H. Morino, T. Maruyama, and K. Iiyama, “Reduction of wavelength dependence of coupling characteristics using Si optical waveguide curved directional coupler,” J. Light. Technol., Vol. 32, Issue 12, pp. 2188-2192, 2014.
[32] S. Chen, Y. Shi, S. He, and D. Dai, “Low-loss and broadband 2 × 2 silicon thermo-optic Mach–Zehnder switch with bent directional couplers,” Opt. Lett., Vol. 41, Issue 4, pp. 836-839, 2016.
[33] Y. Wang, Z. Lu, M. Ma, H. Yun, F. Zhang, N. A. F. Jaeger, and L. Chrostowski, “Compact broadband directional couplers using subwavelength gratings,” IEEE Photon. J., Vol. 8, Issue 3, pp. 1-8, 2016.
[34] B. Bhandari, C. S. Im, K. P. Lee, S. M. Kim, M. C. Oh, and S. S. Lee, “Compact and broadband edge coupler based on multi-stage silicon nitride tapers,” IEEE Photon. J., Vol. 12, Issue 6, pp. 1-11, 2020.
[35] M. L. Dakss, L. Kuhn, P. F. Heidrich, and B. A. Scott, “Errata: grating coupler for efficient excitation of optical guided waves in thin films,” Appl. Phys. Lett., Vol. 17, Issue 6, pp. 268, 1970.
[36] G. Ducournau, O. Latry, and M. Ketata, “The All-fiber MZI Structure for Optical DPSK Demodulation and Optical PSBT Encoding,” JSCI., Vol. 4, pp. 78-89, 2006.
[37] S. Bidnyk, D. Feng, A. Balakrishnan, M. Pearson, M. Gao, H. Liang, W. Qian, C. C. Kung, J. F., J. Yin, and M. Asghari, “Silicon-on-insulator-based planar circuit for passive optical network applications,” IEEE Photon. Lett., Vol. 18, Issue 22, 2006
[38] L. T. Lu, B. Y. B. Widhianto, S. H. Hsu, and C. C. Chang, “Tandem Mach Zehnder directional coupler design and simulation on silicon platform for optical coherence tomography applications,” Sensors, Vol. 20, Issue 4, 2020.
[39] Y. S. Wang, S. J. Chang, C. L. Tsai, M. C. Wu, Y. Z. Chiou, S. P. Chang, W. Lin, “10-Gb/s planar InGaAs P-I-N photodetectors,” IEEE Sens. J., Vol. 10, Issue 10, pp. 1559-1563, 2010.
[40] Y. T. Lyu, K. L. Jaw, C. T. Lee, C. D. Tsai, Y. J. Lin, Y. T. Cherng, “Ohmic performance comparison for Ti/Ni/Au and Ti/Pt/Au on InAs/graded InGaAs/GaAs layers,” Mater. Chem. Phys., Vol. 63, Issue 2, pp. 122-126, 2000.
[41] G. Chen, M. Wang, W. Yang, M. Tan, Y. Wu, P. Dai, Y. Huang, and S. Lu, “Optical properties of Zn-diffused InP layers for the planar-type InGaAs/InP photodetectors,” J. Semicond., Vol. 38, Issue 12, 2017.
[42] X. Li, N. Li, X. Zheng, S. Demiguel, J. Campbell, D. Tulchinsky, and K. Williams, “High-speed high-saturation-current in P/In0.53Ga0.47 as photodiode with partially depleted absorber,” Opt. Fiber Technol., p. WF3, 2003.

無法下載圖示 全文公開日期 2025/08/02 (校內網路)
全文公開日期 2025/08/02 (校外網路)
全文公開日期 2025/08/02 (國家圖書館:臺灣博碩士論文系統)
QR CODE