簡易檢索 / 詳目顯示

研究生: 郭亮延
Liang-Yan Guo
論文名稱: 磺酸化改質之溶劑誘導聚丙烯腈碳球衍生物幾何結構應用於流動式電容去離子技術
Sulfone-modified of solvent-induced polyacrylonitrile carbon sphere structures in flow capacitive deionization
指導教授: 洪維松
Wei-Song Hung
口試委員: 胡蒨傑
Chien-Chieh Hu
林嘉和
Chia-Her Lin
學位類別: 碩士
Master
系所名稱: 應用科技學院 - 應用科技研究所
Graduate Institute of Applied Science and Technology
論文出版年: 2023
畢業學年度: 111
語文別: 中文
論文頁數: 80
中文關鍵詞: 海水淡化電容去離子流動式電容去離子流動電極碳材磺酸化
外文關鍵詞: desalination, capacitive deionization, flow capacitive deionization, flow electrode, carbon material, sulfonation
相關次數: 點閱:228下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

現今社會對於水資源及能源的需求是越來越龐大,目前主要的海水淡化技術如逆滲透和電滲析等雖然已被普遍使用,但其高能耗是最大的缺點。科學家們開發一種新的海水淡化技術,稱為流動電容去離子(FCDI),其具有低能耗、低汙染、電極可自動再生、可連續操作等優點。 FCDI作為一項全新的技術,目前主要還是以活性碳作為流動電極的材料,對其他碳材料的改性研究較少。 在本實驗中,我們使用了三種不同的溶劑誘導聚丙烯腈(PAN)來形成不同結構的碳球衍生物,並探討經由磺酸化改質及在不同磺酸化改質溫度下對於海水中離子的吸引力所帶來的過濾效能影響,並藉由不同的操作模式下外接上電容器來計算出脫鹽過程中的充電效率及能量回收。
實驗結果指出,PAN在與經由丙酮誘導後所形成之球狀結構在經過150oC的磺酸化處理後與其他溶劑及改質溫度相比有著較低的離子轉移電阻及較高的脫鹽效能,在短路閉路循環 (SCC) 模式操作下,其30分鐘內的平均脫鹽率可達到0.19 mmol/m2s,比商用活性碳的0.067 mmol/m2s高出約2.5倍。在孤立閉路循環 (ICC) 模式中計算出75.73%的充電效率,並成功的將電容器從0.00 V充電至0.60 V。
基於上述的研究成果,我們證實了不同的溶劑誘導及磺酸化改質的碳材對於FCDI系統脫鹽能力的提升,同時能從脫鹽過程後在無任何外接電源的情形下收集到額外的電,達到同時產水產電之目的,這對於未來海水淡化及能量回收領域提供了新的研究方向。


The demand for water resources and energy in today's society is growing rapidly. Although current seawater desalination technologies such as reverse osmosis and electrodialysis are widely used, their high energy consumption remains a major drawback. Scientists have developed a new seawater desalination technology called Flow Capacitive Deionization (FCDI), which offers advantages such as low energy consumption, low pollution, electrode regeneration, and continuous operation. FCDI primarily utilizes activated carbon as the material for the flow electrode, with less research focused on other carbon materials and modifications.
In this experiment, we used three different solvents to induce the formation of carbon spheres derived from polyacrylonitrile (PAN). We investigated the filtration performance by sulfonation modification and explored the impact of the attractiveness of ions in seawater under different sulfonation temperatures. Additionally, by connecting an external capacitor in different operating modes, we calculated the charging efficiency and energy recovery during the desalination process.
The experimental results revealed that PAN-derived spherical structures induced by acetone and sulfonated at 150°C exhibited lower ion transfer resistance and higher desalination efficiency compared to other solvents and sulfonation temperatures. Under Short-Circuit Closed (SCC) mode operation, the average desalination rate within 30 minutes reached 0.19 mmol/m2s, approximately 2.5 times higher than that of commercial activated carbon (0.067 mmol/m2s). In Isolated Closed (ICC) mode, a charging efficiency of 75.73% was achieved, successfully charging the capacitor from 0.00 V to 0.60 V.
Based on these research findings, we have demonstrated that carbon materials induced and sulfonated with different solvents can enhance the desalination capability of the FCDI system. Furthermore, additional electrical energy can be harvested without any external power source during the desalination process, achieving the dual purpose of water production and electricity generation. This opens up new research directions for future advancements in seawater desalination and energy recovery fields.

目錄 摘要 I Abstract II 致謝 IV 目錄 V 圖目錄 IX 表目錄 XIII 第一章 緒論 1 第二章 文獻回顧 3 2-1海水淡化之技術與發展 3 2-1-1 相變法 3 2-1-2 薄膜分離法 4 2-1-3電容去離子技術 7 2-2 流動式電容去離子 (FCDI) 13 2-2-1 系統操作模式 14 2-2-1-1 單模組操作 15 2-2-1-2 多模組操作 16 2-2-2 流動電極 17 2-2-2-1 FCDI流動電極材料的種類 17 2-2-2-2 FCDI流動電極導電添加劑 18 2-2-2-3 FCDI流動電極電解質 20 2-2-3 FCDI的未來發展與應用 21 2-2-3-1 混合系統優化 22 2-2-3-2 重金屬去除 23 2-2-3-3 廢水回收 24 2-2-3-4 能量回收 26 第三章 實驗材料與方法 29 3-1 實驗藥品 29 3-2 實驗儀器 30 3-3 實驗步驟 31 3-3-1 PAN碳材製備 31 3-3-2 PAN碳材表面改質 31 3-3-3 FCDI流動電極製備 32 3-4 FCDI模具配置 32 3-5 物理鑑定 34 3-5-1 場發式掃描電子顯微鏡 (FE-SEM) 34 3-5-2 X光繞射儀 (XRD) 34 3-5-3 比表面積與孔隙度分析儀 35 3-6 化學鑑定 35 3-6-1傅立葉紅外光譜儀 (FT-IR) 35 3-6-2 拉曼光譜儀 (Raman) 36 3-6-3 能量色散X射線光譜 (EDS) 37 3-7 電性鑑定 37 3-7-1 電化學阻抗分析儀 (EIS) 37 3-7-2 循環伏安法(CV) 38 3-8 FCDI效能測試 38 3-8-1 脫鹽效能測試 38 3-8-2 充電效能測試 40 第四章 結果與討論 41 4-1 磺酸化改質之效能與鑑定 41 4-1-1物理鑑定 41 4-1-1-1 場發式掃描電子顯微鏡(FE-SEM) 41 4-1-1-2 X光繞射分析 (XRD) 42 4-1-1-3 比表面積與孔隙度分析 43 4-1-2 化學鑒定 45 4-1-2-1 傅立葉紅外光譜儀 (FT-IR) 45 4-1-2-2 拉曼光譜分析 (Raman) 46 4-1-2-3 能量色散X射線光譜 (EDS) 47 4-1-3 電性鑑定 49 4-1-3-1 電化學阻抗分析 (EIS) 49 4-1-3-2 循環伏安法分析 (CV) 50 4-1-4 FCDI 效能測試 51 4-1-4-1 脫鹽效能測試 51 4-2 改質溫度變化對於性能之影響 52 4-2-1 物理鑑定 52 4-2-1-1 場發式掃描電子顯微鏡(FE-SEM) 52 4-2-2 化學鑑定 53 4-2-2-1 傅立葉紅外光譜儀 (FT-IR) 53 4-2-2-3 能量色散X射線光譜 (EDS) 54 4-2-3 電性鑑定 55 4-2-3-1 電化學阻抗分析 (EIS) 55 4-2-4 FCDI效能測試 56 4-2-4-1 脫鹽效能測試 56 4-2-4-2 充電效能測試 57 4-3 脫鹽效能和充電效率與其他研究之比較 59 第五章 結論 61 參考文獻 62

參考文獻
[1] H. Wei, S. Zhao, X. Zhang, B. Wen, Z. Su, The future of freshwater access: functional material-based nano-membranes for desalination, Materials Today Energy 22 (2021) 100856.
[2] S.A. Kalogirou, Seawater desalination using renewable energy sources, Progress in energy and combustion science 31(3) (2005) 242-281.
[3] J. Bundschuh, M. Kaczmarczyk, N. Ghaffour, B. Tomaszewska, State-of-the-art of renewable energy sources used in water desalination: Present and future prospects, Desalination 508 (2021) 115035.
[4] S. Miller, H. Shemer, R. Semiat, Energy and environmental issues in desalination, Desalination 366 (2015) 2-8.
[5] S. Lattemann, T. Höpner, Environmental impact and impact assessment of seawater desalination, Desalination 220(1-3) (2008) 1-15.
[6] D. Zarzo, D. Prats, Desalination and energy consumption. What can we expect in the near future?, Desalination 427 (2018) 1-9.
[7] T. Welgemoed, C.F. Schutte, Capacitive deionization technology™: an alternative desalination solution, Desalination 183(1-3) (2005) 327-340.
[8] L. Han, K. Karthikeyan, K.B. Gregory, Energy consumption and recovery in capacitive deionization using nanoporous activated carbon electrodes, Journal of The Electrochemical Society 162(12) (2015) E282.
[9] P. Długołecki, A. van der Wal, Energy recovery in membrane capacitive deionization, Environmental science & technology 47(9) (2013) 4904-4910.
[10] X. Zheng, D. Chen, Q. Wang, Z. Zhang, Seawater desalination in China: Retrospect and prospect, Chemical engineering journal 242 (2014) 404-413.
[11] O. Morin, Design and operating comparison of MSF and MED systems, Desalination 93(1-3) (1993) 69-109.
[12] G. Raluy, L. Serra, J. Uche, Life cycle assessment of MSF, MED and RO desalination technologies, Energy 31(13) (2006) 2361-2372.
[13] A. Al-Karaghouli, L.L. Kazmerski, Energy consumption and water production cost of conventional and renewable-energy-powered desalination processes, Renewable and Sustainable Energy Reviews 24 (2013) 343-356.
[14] M. Qasim, M. Badrelzaman, N.N. Darwish, N.A. Darwish, N. Hilal, Reverse osmosis desalination: A state-of-the-art review, Desalination 459 (2019) 59-104.
[15] A. Campione, L. Gurreri, M. Ciofalo, G. Micale, A. Tamburini, A. Cipollina, Electrodialysis for water desalination: A critical assessment of recent developments on process fundamentals, models and applications, Desalination 434 (2018) 121-160.
[16] C. Huang, T. Xu, Y. Zhang, Y. Xue, G. Chen, Application of electrodialysis to the production of organic acids: State-of-the-art and recent developments, Journal of membrane science 288(1-2) (2007) 1-12.
[17] S. Al-Amshawee, M.Y.B.M. Yunus, A.A.M. Azoddein, D.G. Hassell, I.H. Dakhil, H.A. Hasan, Electrodialysis desalination for water and wastewater: A review, Chemical Engineering Journal 380 (2020) 122231.
[18] C. Zhang, J. Ma, L. Wu, J. Sun, L. Wang, T. Li, T.D. Waite, Flow electrode capacitive deionization (FCDI): recent developments, environmental applications, and future perspectives, Environmental Science & Technology 55(8) (2021) 4243-4267.
[19] X. Liu, S. Shanbhag, T.V. Bartholomew, J.F. Whitacre, M.S. Mauter, Cost comparison of capacitive deionization and reverse osmosis for brackish water desalination, Acs Es&T Engineering 1(2) (2020) 261-273.
[20] J. Ma, C. Zhai, F. Yu, Review of flow electrode capacitive deionization technology: Research progress and future challenges, Desalination (2023) 116701.
[21] D. Curto, V. Franzitta, A. Guercio, A review of the water desalination technologies, Applied Sciences 11(2) (2021) 670.
[22] Y.M. Volfkovich, Capacitive deionization of water (a review), Russian Journal of Electrochemistry 56 (2020) 18-51.
[23] J. Landon, X. Gao, A. Omosebi, K. Liu, Progress and outlook for capacitive deionization technology, Current Opinion in Chemical Engineering 25 (2019) 1-8.
[24] W. Xing, J. Liang, W. Tang, D. He, M. Yan, X. Wang, Y. Luo, N. Tang, M. Huang, Versatile applications of capacitive deionization (CDI)-based technologies, Desalination 482 (2020) 114390.
[25] C. Zhang, D. He, J. Ma, W. Tang, T.D. Waite, Faradaic reactions in capacitive deionization (CDI)-problems and possibilities: A review, Water research 128 (2018) 314-330.
[26] J.J. Wouters, J.J. Lado, M.I. Tejedor-Tejedor, R. Perez-Roa, M.A. Anderson, Carbon fiber sheets coated with thin-films of SiO2 and γ-Al2O3 as electrodes in capacitive deionization: Relationship between properties of the oxide films and electrode performance, Electrochimica Acta 112 (2013) 763-773.
[27] D. He, C.E. Wong, W. Tang, P. Kovalsky, T.D. Waite, Faradaic reactions in water desalination by batch-mode capacitive deionization, Environmental Science & Technology Letters 3(5) (2016) 222-226.
[28] K.C. Smith, Theoretical evaluation of electrochemical cell architectures using cation intercalation electrodes for desalination, Electrochimica Acta 230 (2017) 333-341.
[29] P. Biesheuvel, R. Zhao, S. Porada, A. Van der Wal, Theory of membrane capacitive deionization including the effect of the electrode pore space, Journal of colloid and interface science 360(1) (2011) 239-248.
[30] J.-H. Lee, J.-H. Choi, The production of ultrapure water by membrane capacitive deionization (MCDI) technology, Journal of membrane science 409 (2012) 251-256.
[31] A.J. Aldalou, Y.K. Mogheir, Desalination Alternative Technology in Conjunction with Membrane Capacitive Deionization (MCDI): A Literature Review Article, Journal of Environmental Protection 12(03) (2021) 218.
[32] X. Gao, A. Omosebi, J. Landon, K. Liu, Surface charge enhanced carbon electrodes for stable and efficient capacitive deionization using inverted adsorption–desorption behavior, Energy & Environmental Science 8(3) (2015) 897-909.
[33] X. Che, S. Wang, C. Li, G. Wang, C. Li, S. Wang, D. Li, J. Qiu, Inverted capacitive deionization with highly enhanced stability performance utilizing ionic liquid-functionalized carbon electrodes, ACS Sustainable Chemistry & Engineering 7(18) (2019) 15715-15722.
[34] P. Srimuk, J. Lee, S. Fleischmann, S. Choudhury, N. Jäckel, M. Zeiger, C. Kim, M. Aslan, V. Presser, Faradaic deionization of brackish and sea water via pseudocapacitive cation and anion intercalation into few-layered molybdenum disulfide, Journal of Materials Chemistry A 5(30) (2017) 15640-15649.
[35] Q. Li, Y. Zheng, D. Xiao, T. Or, R. Gao, Z. Li, M. Feng, L. Shui, G. Zhou, X. Wang, Faradaic electrodes open a new era for capacitive deionization, Advanced Science 7(22) (2020) 2002213.
[36] J.E. Dykstra, Desalination with porous electrodes: Mechanisms of ion transport and adsorption, Wageningen University and Research, 2018.
[37] B. Kastening, W. Schiel, M. Henschel, Electrochemical polarization of activated carbon and graphite powder suspensions: Part I. Capacity of suspensions and polarization dynamics, Journal of electroanalytical chemistry and interfacial electrochemistry 191(2) (1985) 311-328.
[38] M. Duduta, B. Ho, V.C. Wood, P. Limthongkul, V.E. Brunini, W.C. Carter, Y.M. Chiang, Semi‐solid lithium rechargeable flow battery, Advanced Energy Materials 1(4) (2011) 511-516.
[39] V. Presser, C.R. Dennison, J. Campos, K.W. Knehr, E.C. Kumbur, Y. Gogotsi, The electrochemical flow capacitor: A new concept for rapid energy storage and recovery, Advanced energy materials 2(7) (2012) 895-902.
[40] S.-i. Jeon, H.-r. Park, J.-g. Yeo, S. Yang, C.H. Cho, M.H. Han, D.K. Kim, Desalination via a new membrane capacitive deionization process utilizing flow-electrodes, Energy & Environmental Science 6(5) (2013) 1471-1475.
[41] Y. Cho, C.-Y. Yoo, S.W. Lee, H. Yoon, K.S. Lee, S. Yang, D.K. Kim, Flow-electrode capacitive deionization with highly enhanced salt removal performance utilizing high-aspect ratio functionalized carbon nanotubes, Water research 151 (2019) 252-259.
[42] F. Yu, Z. Yang, Y. Cheng, S. Xing, Y. Wang, J. Ma, A comprehensive review on flow-electrode capacitive deionization: Design, active material and environmental application, Separation and Purification Technology 281 (2022) 119870.
[43] K. Luo, Q. Niu, Y. Zhu, B. Song, G. Zeng, W. Tang, S. Ye, J. Zhang, M. Duan, W. Xing, Desalination behavior and performance of flow-electrode capacitive deionization under various operational modes, Chemical Engineering Journal 389 (2020) 124051.
[44] S. Yang, H. Kim, S.-i. Jeon, J. Choi, J.-g. Yeo, H.-r. Park, J. Jin, D.K. Kim, Analysis of the desalting performance of flow-electrode capacitive deionization under short-circuited closed cycle operation, Desalination 424 (2017) 110-121.
[45] S.-i. Jeon, J.-g. Yeo, S. Yang, J. Choi, D.K. Kim, Ion storage and energy recovery of a flow-electrode capacitive deionization process, Journal of Materials Chemistry A 2(18) (2014) 6378-6383.
[46] J. Ma, C. Zhang, F. Yang, X. Zhang, M.E. Suss, X. Huang, P. Liang, Carbon black flow electrode enhanced electrochemical desalination using single-cycle operation, Environmental science & technology 54(2) (2019) 1177-1185.
[47] S.-i. Jeon, J. Lee, K. Jo, C. Kim, C. Lee, J. Yoon, Novel reuse strategy in flow-electrode capacitive deionization with switch cycle operation to enhance desalination performance, Environmental Science & Technology Letters 6(12) (2019) 739-744.
[48] Y. Gendel, A.K.E. Rommerskirchen, O. David, M. Wessling, Batch mode and continuous desalination of water using flowing carbon deionization (FCDI) technology, Electrochemistry Communications 46 (2014) 152-156.
[49] N.-L. Liu, S.-H. Sun, C.-H. Hou, Studying the electrosorption performance of activated carbon electrodes in batch-mode and single-pass capacitive deionization, Separation and purification technology 215 (2019) 403-409.
[50] S. Wang, Y. Xu, M. Yan, Z. Zhai, B. Ren, L. Zhang, Z. Liu, Comparative study of metal-doped carbon aerogel: Physical properties and electrochemical performance, Journal of Electroanalytical Chemistry 809 (2018) 111-116.
[51] N. Arora, F. Banat, E. Alhseinat, Capacitive deionization performance of CNTs-Si-Ag based electrodes for the removal of heat stable salts from methyldiethanolamine (MDEA) solution in natural gas sweetening units, Chemical Engineering Journal 356 (2019) 400-412.
[52] Y. Chen, M. Yue, Z.-H. Huang, F. Kang, Electrospun carbon nanofiber networks from phenolic resin for capacitive deionization, Chemical Engineering Journal 252 (2014) 30-37.
[53] O. Sufiani, J. Elisadiki, R.L. Machunda, Y.A. Jande, Modification strategies to enhance electrosorption performance of activated carbon electrodes for capacitive deionization applications, Journal of Electroanalytical Chemistry 848 (2019) 113328.
[54] S. Porada, R. Zhao, A. van der Wal, V. Presser, P.M. Biesheuvel, Review on the science and technology of water desalination by capacitive deionization, Progress in materials science 58(8) (2013) 1388-1442.
[55] K. Singh, S. Porada, H. De Gier, P. Biesheuvel, L. De Smet, Timeline on the application of intercalation materials in Capacitive Deionization, Desalination 455 (2019) 115-134.
[56] Y.-U. Shin, J. Lim, C. Boo, S. Hong, Improving the feasibility and applicability of flow-electrode capacitive deionization (FCDI): Review of process optimization and energy efficiency, Desalination 502 (2021) 114930.
[57] S. Porada, D. Weingarth, H.V. Hamelers, M. Bryjak, V. Presser, P.M. Biesheuvel, Carbon flow electrodes for continuous operation of capacitive deionization and capacitive mixing energy generation, Journal of Materials Chemistry A 2(24) (2014) 9313-9321.
[58] B. Marinho, M. Ghislandi, E. Tkalya, C.E. Koning, G. de With, Electrical conductivity of compacts of graphene, multi-wall carbon nanotubes, carbon black, and graphite powder, Powder technology 221 (2012) 351-358.
[59] P. Liang, X. Sun, Y. Bian, H. Zhang, X. Yang, Y. Jiang, P. Liu, X. Huang, Optimized desalination performance of high voltage flow-electrode capacitive deionization by adding carbon black in flow-electrode, Desalination 420 (2017) 63-69.
[60] Y. Sun, Y. Cheng, F. Yu, J. Ma, Enhanced salt removal performance using graphene-modified sodium vanadium fluorophosphate in flow electrode capacitive deionization, ACS Applied Materials & Interfaces 13(45) (2021) 53850-53858.
[61] T.M. Narayanan, Y.G. Zhu, E. Gençer, G. McKinley, Y. Shao-Horn, Low-cost manganese dioxide semi-solid electrode for flow batteries, Joule 5(11) (2021) 2934-2954.
[62] H. Huang, F. Li, C. Yu, H. Fang, X. Guo, D. Li, Anion-/cationic compounds enhance the dispersion of flow electrodes to obtain high capacitive deionization performance, Desalination 515 (2021) 115182.
[63] S. Yang, J. Choi, J.-g. Yeo, S.-i. Jeon, H.-r. Park, D.K. Kim, Flow-electrode capacitive deionization using an aqueous electrolyte with a high salt concentration, Environmental science & technology 50(11) (2016) 5892-5899.
[64] C. Dennison, M. Beidaghi, K. Hatzell, J. Campos, Y. Gogotsi, E. Kumbur, Effects of flow cell design on charge percolation and storage in the carbon slurry electrodes of electrochemical flow capacitors, Journal of Power Sources 247 (2014) 489-496.
[65] D. Moreno, M.C. Hatzell, Influence of feed-electrode concentration differences in flow-electrode systems for capacitive deionization, Industrial & Engineering Chemistry Research 57(26) (2018) 8802-8809.
[66] H.J. Chung, J. Kim, D.I. Kim, G. Gwak, S. Hong, Feasibility study of reverse osmosis–flow capacitive deionization (RO-FCDI) for energy-efficient desalination using seawater as the flow-electrode aqueous electrolyte, Desalination 479 (2020) 114326.
[67] C. Zhang, L. Wu, J. Ma, M. Wang, J. Sun, T.D. Waite, Evaluation of long-term performance of a continuously operated flow-electrode CDI system for salt removal from brackish waters, Water Research 173 (2020) 115580.
[68] C. Zhang, L. Wu, J. Ma, A.N. Pham, M. Wang, T.D. Waite, Integrated flow-electrode capacitive deionization and microfiltration system for continuous and energy-efficient brackish water desalination, Environmental science & technology 53(22) (2019) 13364-13373.
[69] N. Abdullah, N. Yusof, W. Lau, J. Jaafar, A. Ismail, Recent trends of heavy metal removal from water/wastewater by membrane technologies, Journal of Industrial and Engineering Chemistry 76 (2019) 17-38.
[70] M.A.A. Shahmirzadi, S.S. Hosseini, J. Luo, I. Ortiz, Significance, evolution and recent advances in adsorption technology, materials and processes for desalination, water softening and salt removal, Journal of environmental management 215 (2018) 324-344.
[71] X. Zhang, F. Yang, J. Ma, P. Liang, Effective removal and selective capture of copper from salty solution in flow electrode capacitive deionization, Environmental Science: Water Research & Technology 6(2) (2020) 341-350.
[72] L. Wang, S. Lin, Mechanism of selective ion removal in membrane capacitive deionization for water softening, Environmental science & technology 53(10) (2019) 5797-5804.
[73] J. Ma, Y. Zhang, R.N. Collins, S. Tsarev, N. Aoyagi, A.S. Kinsela, A.M. Jones, T.D. Waite, Flow-electrode CDI removes the uncharged Ca–UO2–CO3 ternary complex from brackish potable groundwater: Complex dissociation, transport, and sorption, Environmental science & technology 53(5) (2019) 2739-2747.
[74] L. Xu, C. Yu, Y. Mao, Y. Zong, B. Zhang, H. Chu, D. Wu, Can flow-electrode capacitive deionization become a new in-situ soil remediation technology for heavy metal removal?, Journal of Hazardous Materials 402 (2021) 123568.
[75] T. Kim, C.A. Gorski, B.E. Logan, Ammonium removal from domestic wastewater using selective battery electrodes, Environmental Science & Technology Letters 5(9) (2018) 578-583.
[76] M. Son, B.L. Aronson, W. Yang, C.A. Gorski, B.E. Logan, Recovery of ammonium and phosphate using battery deionization in a background electrolyte, Environmental Science: Water Research & Technology 6(6) (2020) 1688-1696.
[77] C. Zhang, J. Ma, D. He, T.D. Waite, Capacitive membrane stripping for ammonia recovery (CapAmm) from dilute wastewaters, Environmental Science & Technology Letters 5(1) (2018) 43-49.
[78] Y. Bian, X. Chen, L. Lu, P. Liang, Z.J. Ren, Concurrent nitrogen and phosphorus recovery using flow-electrode capacitive deionization, ACS Sustainable Chemistry & Engineering 7(8) (2019) 7844-7850.
[79] S. Han, S.-i. Jeon, J. Lee, J. Ahn, C. Lee, J. Lee, J. Yoon, Efficient bicarbonate removal and recovery of ammonium bicarbonate as CO2 utilization using flow-electrode capacitive deionization, Chemical Engineering Journal 431 (2022) 134233.
[80] J. Dykstra, S. Porada, A. Van Der Wal, P. Biesheuvel, Energy consumption in capacitive deionization–Constant current versus constant voltage operation, Water research 143 (2018) 367-375.
[81] B. Kim, J.Y. Seo, C.-H. Chung, A hybrid system of capacitive deionization and redox flow battery for continuous desalination and energy storage, Journal of Power Sources 448 (2020) 227384.
[82] C. Tan, C. He, W. Tang, P. Kovalsky, J. Fletcher, T.D. Waite, Integration of photovoltaic energy supply with membrane capacitive deionization (MCDI) for salt removal from brackish waters, Water research 147 (2018) 276-286.
[83] J. Ma, P. Liang, X. Sun, H. Zhang, Y. Bian, F. Yang, J. Bai, Q. Gong, X. Huang, Energy recovery from the flow-electrode capacitive deionization, Journal of Power Sources 421 (2019) 50-55.
[84] S. Aizad, B.H. Yahaya, S.I. Zubairi, Fabrication of 3-D polymeric scaffold: The development of continuous flow salt leaching kit coupled with ion conductivity detection, Regen. Res 3 (2014) 165-168.
[85] S. Nataraj, K. Yang, T. Aminabhavi, Polyacrylonitrile-based nanofibers—A state-of-the-art review, Progress in polymer science 37(3) (2012) 487-513.
[86] H.S. Mahmood, M.K. Jawad, Antibacterial activity of chitosan/PAN blend prepared at different ratios, AIP Conference Proceedings, AIP Publishing LLC, 2019, p. 020078.
[87] E. Cipriani, M. Zanetti, P. Bracco, V. Brunella, M. Luda, L. Costa, Crosslinking and carbonization processes in PAN films and nanofibers, Polymer Degradation and Stability 123 (2016) 178-188.
[88] A.R. Ferreira, J. Silvestre-Albero, M.E. Maier, N.M. Ricardo, C.L. Cavalcante Jr, F.M.T. Luna, Sulfonated activated carbons as potential catalysts for biolubricant synthesis, Molecular Catalysis 488 (2020) 110888.
[89] Y. Ha, H. Lee, H. Yoon, D. Shin, W. Ahn, N. Cho, U. Han, J. Hong, N.A.T. Tran, C.-Y. Yoo, Enhanced salt removal performance of flow electrode capacitive deionization with high cell operational potential, Separation and Purification Technology 254 (2021) 117500.
[90] J. Ma, J. Ma, C. Zhang, J. Song, R.N. Collins, T.D. Waite, Water recovery rate in short-circuited closed-cycle operation of flow-electrode capacitive deionization (FCDI), Environmental Science & Technology 53(23) (2019) 13859-13867.
[91] A. Rommerskirchen, C.J. Linnartz, D. Müller, L.K. Willenberg, M. Wessling, Energy recovery and process design in continuous flow–electrode capacitive deionization processes, ACS Sustainable Chemistry & Engineering 6(10) (2018) 13007-13015.
[92] L. Xu, L. Tang, S. Peng, Y. Mao, D. Wu, Magnetic array for efficient and stable Flow-electrode capacitive deionization, Chemical Engineering Journal 446 (2022) 137415.

無法下載圖示 全文公開日期 2028/08/17 (校內網路)
全文公開日期 2028/08/17 (校外網路)
全文公開日期 2028/08/17 (國家圖書館:臺灣博碩士論文系統)
QR CODE