簡易檢索 / 詳目顯示

研究生: 張名棻
Ming-Fen Chang
論文名稱: 磁性矽化包埋 β-葡萄糖苷酶之研究
Silicification of β-glucosidase for its immobilization on magnetic nanoparticle surface.
指導教授: 李振綱
Cheng-Kang Lee
口試委員: 陳秀美
Hsiu-Mei Chen
王勝仕
Steven S.-S. Wang
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2013
畢業學年度: 101
語文別: 中文
論文頁數: 104
中文關鍵詞: 矽化包埋β-葡萄糖苷酶磁珠
外文關鍵詞: silicification, magnetic nanoparticles, β-Glucosidase, immobilization
相關次數: 點閱:249下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文研究是以仿生物矽化的方式對蛋白質進行包埋,進而達到穩定蛋白質結構,使蛋白質在較為不利的環境下,仍能維持較高的活性,為利於包埋之蛋白質回收再使用,在矽化過程中將混入奈米磁粒,製備成具磁性之矽化蛋白質。聚乙烯亞胺( Polyethylenimine, PEI),是一個帶有高密度正電荷的有機大分子,與矽藻中具有聚合矽酸功能的Silaffin蛋白功能相同,能將矽酸分子聚合成顆粒。
    本論文先合成表面具有PEI的奈米磁粒(40~50nm),再與β-葡萄糖苷酶以靜電作用方式結合,之後以矽酸溶液進行矽化包埋。β-葡萄糖苷酶,又稱為 β-D-glucosidase 或cellobiase,主要會對纖維雙醣進行水解,產生葡萄糖單體,固定化後的β-葡萄糖苷酶活性回收率約為91.23%,最適反應PH為4~4.5,最適反應溫度為55℃~60℃,浸入60℃下2.5小時,固定化後的β-葡萄糖苷酶仍維持51.13%的活性,自由態酵素則完全失去活性;以矽化包埋固定化之β-葡萄糖苷酶,重複使用5次後,殘餘活性仍可達69.8%。此磁性矽化之β-葡萄糖苷酶可應用於纖維素之酵素水解上,減輕纖維寡糖抑制纖維素水解酶的問題,提升纖維素之水解速率。


    β-Glucosidase, from Aspergillus niger, was used as a model enzyme to be immobilized by silicification on magnetic nanoparticles. The enzyme catalysts the reaction of converting the colorless substrate p-nitrophenyl-β-D- glucopyranoside (p-NPG) to yellowish production p-nitrophenol. Enzymes immobilization by encapsulation in silica have been studied for some times but usually carried out by solvent containing sol-gel process. Recently, polycationic peptides isolated from diatom cell walls such as R5 have been used to induce the precipitation of silicic acid in the presence of enzyme for the purpose of enzyme immobilization in silica. In addition to polycationic peptides, polycationic compound such as polyethyleneimine (PEI) was found to be a good biomimicking catalyst can also induce the polycondensation of silicic acid. In this thesis, silicic acids from hydrolyzed tetramethyl orthosilicate (TMOS) and neutralized sodium silicate were employed to be precipitated by PEI coated on β-glucosidase immobilized magnetic nanoparticles (MPBP) which was prepared by immobilizing β-glucosidase on PEI coated magnetic nanoparticles (MP) via electrostatic interactions. The size of silicificated β-glucosidase magnetic particles is approximately 350 nm with β-glucosidase content about 4.3 mg/gram of dry MP. As compared with free enzyme, the relative activity of silicificated β-glucosidase is 91.84% with half-life about 4 times longer at 60℃. Moreover, immobilized β-glucosidase can be reused for 5 times still maintains 70% of its initial activity. The facile enzyme immobilization method demonstrated that silica encapsulation can protect the β-glucosidase from leakage and denaturation, and the β-glucosidase activity can be easily retrieved by applying a magnetic field.

    中文摘要 I Abstract II 目錄 III 圖目錄 VIII 表目錄 XI 第一章 緒論 1 1.1 研究背景 1 1.2研究內容簡介 3 第二章 文獻回顧 5 2.1 β-葡萄糖苷酶 5 2.1.1 β-葡萄糖苷酶在纖維素水解上的應用 5 2.1.2 β-glucosidase生化特性 6 2.1.3 β-glucosidase 之應用 9 2.1.4 β-glucosidase 固定化 10 2.2矽酸甲酯及矽酸鈉之矽化特性 14 2.2.1正矽酸甲酯之矽化性質 14 2.2.2矽酸鈉之矽化性質 16 2.3 生物矽化(biosilicification) 17 2.3.1生物矽化的優勢、發展與應用 17 2.3.2矽藻細胞壁之矽化機制 19 2.3.3參與矽藻內生物矽化之有機物 21 2.3.4生物矽化之應用-生物分子誘導之矽化作用 24 2.3.5仿生物矽化及其應用 26 2.4 仿生物矽化結合磁性載體技術之應用 28 第三章 實驗內容 31 3.1實驗流程 31 3.2實驗藥品 35 3.3實驗儀器 36 3.4 實驗方法 38 3.4.1 PEI誘導矽化能力測試 38 3.4.1.1 PEI與蛋白質矽化能力之比較 38 3.4.1.2 PEI矽化沉澱之速度 38 3.4.1.3 PEI與ε-PL誘導TMOS與矽酸鈉之矽化效果 39 3.4.1.4 PEI表面處理後之玻片表面矽化情形 40 3.4.2 BGL固定化之最佳條件 41 3.4.2.1 pH值對BGL固定於磁粒上之影響 41 3.4.2.2磁粒上修飾第二層PEI之最佳PEI濃度 41 3.4.2.3於磁粒最外層形成矽膠之最佳矽酸濃度 42 3.4.3 矽化法固定化BGL磁粒之製備 42 3.4.3.1 磁粒製備 42 3.4.3.2 PEI表面修飾之奈米磁粒 43 3.4.3.3 BGL固定於PEI磁粒上 43 3.4.3.4修飾第二層PEI於BGL磁粒 44 3.4.3.5 以sodium silicate 矽化BGL固定化磁粒 45 3.4.3.6以TMOS矽化BGL固定化磁粒 46 3.4.4 sodium silicate 矽化之BGL磁粒(MPBPS)特性分析 46 3.4.4.1 傅立葉紅外線光譜(FTIR)分析 46 3.4.4.2 X光繞射(XRD) 47 3.4.4.3 熱重量分析儀(TGA) 48 3.4.4.4感應耦合電漿原子發射光譜儀(ICP-AES) 48 3.4.4.5掃描式電子顯微鏡(SEM) 49 3.4.4.6穿透式電子顯微鏡(TEM) 50 3.4.5 BGL固定化磁粒(MPBPS及MPBPT)之活性分析 50 3.4.5.1 β-葡萄糖苷酶活性分析 50 3.4.5.2 最適反應溫度測定 53 3.4.5.3 固定化酵素活性分析 53 3.4.5.4 熱穩定之測定 53 3.4.5.5重複使用性之測定 54 3.4.5.6酵素動力學分析 54 第四章 結果與討論 55 4.1 PEI之仿生矽化能力 55 4.1.1 PEI與蛋白質矽化能力之比較 55 4.1.2 PEI與ε-PL誘導TMOS與矽酸鈉之矽化效果 59 4.1.3 PEI表面處理後之玻片表面矽化情形 62 4.2 BGL固定化之最佳條件 64 4.2.1 pH值對BGL固定量之影響 64 4.2.2 PEI濃度對磁粒顆粒均勻分布之影響 65 4.2.3矽酸濃度對顆粒均勻分布之影響 67 4.3 BGL矽化磁珠(MPBPS)之成分分析 69 4.3.1 傅立葉紅外線光譜(FTIR)分析 69 4.3.2 Fe3O4結晶特徵繞射角分析(XRD) 70 4.3.3 MPBPS之熱重損失分析(TGA) 71 4.3.4 MPBPS之矽含量分析(ICP-AES) 72 4.4 BGL矽化磁珠(MPBPS)之型態分析 72 4.4.1 MPBPS表面型態分析 (SEM) 72 4.4.2 MPBPS之結構分析(TEM) 74 4.5 BGL矽化磁珠(MPBPS)之活性分析 76 4.5.1固定化酵素活性分析 76 4.5.2最適反應溫度 77 4.5.3熱穩定性測定 78 4.5.4重複使用性之測定 79 4.5.5酵素動力學分析 80 第五章 結論 84 參考文獻 86

    Abdel-Fattah, A. F., M. Y. Osman, et al. (1997). "Production and immobilization of cellobiase from Aspergillus niger A20." Chemical Engineering Journal 68(2–3): 189-196.

    Akgol, S., Y. Kacar, et al. (2001). "Hydrolysis of sucrose by invertase immobilized onto novel magnetic polyvinylalcohol microspheres." Food Chemistry 74(3): 281-288.

    Betancor, L. and H. R. Luckarift (2008). "Bioinspired enzyme encapsulation for biocatalysis." Trends in Biotechnology 26(10): 566-572.

    Bı́lkova, Z., M. Slovakova, et al. (2002). "Enzymes immobilized on magnetic carriers: efficient and selective system for protein modification." Journal of Chromatography B 770(1–2): 177-181.

    Broomberg, J., #233, et al. (1999). "Review of Magnetic Carrier Technologies for Metal Ion Removal." Magnetic and Electrical Separation 9(3): 169-188.

    Chien, L.-J. and C.-K. Lee (2008). "Biosilicification of dual-fusion enzyme immobilized on magnetic nanoparticle." Biotechnology and Bioengineering 100(2): 223-230.

    Cho, W. K., S. M. Kang, et al. (2006). "Formation of Superhydrophobic Surfaces by Biomimetic Silicification and Fluorination." Langmuir 22(26): 11208-11213.

    De Cuyper, M., M. Hodenius, et al. (2002). "Attachment of Water-Soluble Proteins to the Surface of (Magnetizable) Phospholipid Colloids via NeutrAvidin-Derivatized Phospholipids." Journal of Colloid and Interface Science 245(2): 274-280.
    Gomez, J. M., M. D. Romero, et al. (2005). "Immobilization of β-Glucosidase on carbon nanotubes." Catalysis Letters 101(3): 275-278.
    Goon, I. Y., L. M. H. Lai, et al. (2009). "Fabrication and Dispersion of Gold-Shell-Protected Magnetite Nanoparticles: Systematic Control Using Polyethyleneimine." Chem Mater 21(4): 673-681.

    Gupta, P. K. and C. T. Hung (1989). "Minireview Magnetically controlled targeted micro-carrier systems." Life Sciences 44(3): 175-186.

    Iler, R. K. (1979). Chemistry of Silica - Solubility, Polymerization, Colloid and Surface Properties and Biochemistry, John Wiley & Sons.

    Iryanti, F. I. F. N., S. N. S. E.-S. Nermeen, et al. (2011). "Carbonaceous materials passivation on amine functionalized magnetic nanoparticles and its application for metal affinity isolation of recombinant protein." CORD Conference Proceedings 3(9): 3342-3349.

    Jian-ping, P. L.-h. L. (2006). "Advance in Research and Application of β-D-glucosidase."

    Joo, A.-R., M. Jeya, et al. (2009). "Purification and characterization of a β-1,4-glucosidase from a newly isolated strain of Fomitopsis pinicola." Applied Microbiology and Biotechnology 83(2): 285-294.

    Josephson, L., J. M. Perez, et al. (2001). "Magnetic Nanosensors for the Detection of Oligonucleotide Sequences." Angewandte Chemie 113(17): 3304-3306.

    Katz, E., L. Sheeney-Haj-Ichia, et al. (2002). "Dual Biosensing by Magneto-Controlled Bioelectrocatalysis." Angewandte Chemie International Edition 41(8): 1343-1346.
    Kristensen, J. B., R. L. Meyer, et al. (2010). "Biomimetic silica encapsulation of enzymes for replacement of biocides in antifouling coatings." Green Chemistry 12(3): 387-394.

    Kroger, N., R. Deutzmann, et al. (1999). "Polycationic peptides from diatom biosilica that direct silica nanosphere formation." Science (New York, N.Y.) 286(5442): 1129-1132.

    Lau, A. T. Y. and W. K. R. Wong (2001). "Purification and Characterization of a Major Secretory Cellobiase, Cba2, from Cellulomonas biazotea." Protein Expression and Purification 23(1): 159-166.

    Lin, M., D. Lu, et al. (2012). "Magnetic enzyme nanogel (MENG): a universal synthetic route for biocatalysts." Chemical Communications 48(27): 3315-3317.

    Lin, Z.-A., J.-N. Zheng, et al. (2011). "Synthesis of magnetic nanoparticles with immobilized aminophenylboronic acid for selective capture of glycoproteins." Journal of Materials Chemistry 21(2): 518-524.

    Long-Rowe, K. O. and J. W. Burnett (1994). "Characteristics of hyaluronidase and hemolytic activity in fishing tentacle nematocyst venom of Chrysaora quinquecirrha." Toxicon 32(2): 165-174.

    Luckarift, H. R., J. C. Spain, et al. (2004). "Enzyme immobilization in a biomimetic silica support." Nat Biotech 22(2): 211-213.

    Lubbe, A. S., C. Alexiou, et al. (2001). "Clinical Applications of Magnetic Drug Targeting." Journal of Surgical Research 95(2): 200-206.

    Marner, W. D., A. S. Shaikh, et al. (2009). "Enzyme immobilization via silaffin-mediated autoencapsulation in a biosilica support." Biotechnology Progress 25(2): 417-423.

    Martino, A., M. Durante, et al. (1996). "Immobilization of β-glucosidase from a commercial preparation. Part 1. A comparative study of natural supports." Process Biochemistry 31(3): 281-285.

    Matthijs, G. and E. Schacht (1996). "Comparative study of methodologies for obtaining β-glucosidase immobilized on dextran-modified silica." Enzyme and Microbial Technology 19(8): 601-605.

    Moffat, G., R. A. Williams, et al. (1994). "Selective separations in environmental and industrial processes using magnetic carrier technology." Minerals Engineering 7(8): 1039-1056.

    Muller, W. E. G. (2003). Silicon Biomineralization: Biology, Biochemistry, Molecular Biology, Biotechnology, Springer.

    Nam, D. H., K. Won, et al. (2009). "A novel route for immobilization of proteins to silica particles incorporating silaffin domains." Biotechnology Progress 25(6): 1643-1649.

    Paavilainen, S., J. Hellman, et al. (1993). "Purification, characterization, gene cloning, and sequencing of a new beta-glucosidase from Bacillus circulans subsp. alkalophilus." Applied and environmental microbiology 59(3): 927-932.

    Patwardhan, S. V. (2011). "Biomimetic and bioinspired silica: recent developments and applications." Chemical Communications 47(27): 7567-7582.

    Peng, Z. G., K. Hidajat, et al. (2005). "Selective and sequential adsorption of bovine serum albumin and lysozyme from a binary mixture on nanosized magnetic particles." Journal of Colloid and Interface Science 281(1): 11-17.

    Peralta, R. M., M. K. Kadowaki, et al. (1997). "A highly thermostable β-glucosidase activity from the thermophilic fungus Humicola grisea var. thermoidea: purification and biochemical characterization." FEMS Microbiology Letters 146(2): 291-295.

    Riou, C., J.-M. Salmon, et al. (1998). Purification, Characterization, and Substrate Specificity of a Novel Highly Glucose-Tolerant β-Glucosidase from Aspergillus oryzae, American Society for Microbiology.

    Roth, K. M., Y. Zhou, et al. (2005). "Bifunctional small molecules are biomimetic catalysts for silica synthesis at neutral pH." Journal of the American Chemical Society 127(1): 325-330.

    Šafařik, I. and M. Šafařikova (2002). "Magnetic Nanoparticles and Biosciences." Monatshefte fur Chemie / Chemical Monthly 133(6): 737-759.

    Schutt, W., C. Gruttner, et al. (1997). "Applications of magnetic targeting in diagnosis and therapy--possibilities and limitations: a mini-review." Hybridoma 16(1): 109-117.

    Singh, R., Y.-W. Zhang, et al. (2011). "Covalent immobilization of β-1,4-glucosidase from <i>Agaricus arvensis</i> onto functionalized silicon oxide nanoparticles." Applied Microbiology and Biotechnology 89(2): 337-344.

    Sumper, M. and N. Kroger (2004). "Silica formation in diatoms: the function of long-chain polyamines and silaffins." Journal of Materials Chemistry 14(14): 2059-2065.

    Sundar, V. C., A. D. Yablon, et al. (2003). "Fibre-optical features of a glass sponge." Nature 424(6951): 899-900.

    Watanabe, T., T. Sato, et al. (1992). "Purificication and properties of Aspergillus nigerβ-glucosidase." European Journal of Biochemistry 209(2): 651-659.

    Yuan, J.-J. and R.-H. Jin (2011). "Polyamine@silica hybrid nanograss: biomimetic fabrication, structure characterization and surface functionalization." Journal of Materials Chemistry 21(29): 10720.

    Zhang, Y., N. Kohler, et al. (2002). "Surface modification of superparamagnetic magnetite nanoparticles and their intracellular uptake." Biomaterials 23(7): 1553-1561.

    Zhu, P.-X., N. Fukazawa, et al. (2007). "Polyethyleneimine Aggregates Regulated by Metal Cations Acting as Biomimetic Organic Reactors for Silica Architectures." Small 3(3): 394-398.

    吳建成 (2010). 利用PAA進行生物矽化包覆Rhodosporidium toruloides D型胺基酸氧化酶以增進其穩定性. 生物工程學系(所). 台北市, 大同大學. 碩士: 93.

    李中正 (2005). 煙麴黴中β-葡萄糖苷酶之纯化及生化特性探討. 食品科學系. 屏東縣, 屏東科技大學. 碩士: 93.
    廖敏宏 (2002). 磁性奈米載體在生物觸媒和生化分離之應用. 化學工程學系碩博士班. 台南市, 國立成功大學. 博士: 230.

    劉演澤 (2008). 表面固定化海藻酸銨磁性奈米載體性質對血液相容性之影響. 高分子系. 台北市, 國立臺灣科技大學. 碩士: 82.

    無法下載圖示
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE