簡易檢索 / 詳目顯示

研究生: 張帆
FAN ZHANG
論文名稱: 光登伯光偵測器之物理機制研究
Physical Mechanism of Photo-Dember Detectors
指導教授: 陳瑞山
Ruei-San Chen
口試委員: 李奎毅
Kuei-Yi Lee
王智祥
Jyh-Shyang Wang
徐旭政
Hsu-Cheng Hsu
學位類別: 碩士
Master
系所名稱: 應用科技學院 - 應用科技研究所
Graduate Institute of Applied Science and Technology
論文出版年: 2023
畢業學年度: 111
語文別: 中文
論文頁數: 89
中文關鍵詞: 光登伯光偵測器光登伯效應光響應掃描式光電流顯微術電洞活期電子遷移率
外文關鍵詞: photo-Dember photodetectors, photo-Dember effect, photocurrent, scanning photocurrent microscopy (SPCM), hole lifetime, electron mobility
相關次數: 點閱:314下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本篇論文主要探討如何利用光登伯效應 (Photo-Dember Effect) 製作一種自供電與非致冷的紅外光登伯偵測器,。我們發現可以通過利用電子電洞極大的遷移率差異,在半導體與電極邊界處產生電洞聚集電子會先進入電極,電洞留在邊界,並設計不對稱電極元件造成,使兩邊正電荷差異,由此特殊的光電場來達成而形成電場來優化光登伯光偵測器的目的。材料上我們選擇InSb與GaAs。InSb方面,藉由此效應,我們製作InSb光登伯光偵測器,在InSb中因其電子電洞遷移率差異達到約100倍,且因爲其能隙只有0.17 eV,會是非常優秀的非製冷、自供電、中遠紅外偵測器。經過量測,其在零外加偏壓且均勻光照的條件下,可表現出極佳的光電流響應,從可見光到紅外光波長範圍(532~1550 nm)皆有明顯的光響應。隨著雷射強度增加,光電流呈現線性的上升趨勢。在波長1064 nm的紅外光均勻照射下可量到最佳的光響應率 (Photoresponsivity) 與偵測率 (Detectivity) ,并發現在製程中選用不同遮罩的差異。此外,爲了進一步探討光登伯效應的物理機制,我們將材料更換爲GaAs,高時間解析光電導量測也顯示其光響應時間最快可達到 265 μs。利用掃描式光電流顯微術,在局部照光條件下可進一步證實 GaAs確實存在由光登伯效應產生的光電流,光登伯效應造成的光電流只在非常靠近元件電極處產生,並且在低溫環境下具有更高的光電流及更低的反應時間。


This thesis investigates how to design and fabricate a self-powered and uncooled infrared (IR) photodetector based on the photo-Dember effect. The Dember photodetectors driven by the hole accumulation at the edge of metal electrodes and induced photovoltage were achieved by fabricating geometrically asymmetric electrodes and utilizing the nature of great electron to hole mobility ratio (EHMR) in semiconductors. Indium antimonide (InSb) and gallium arsenide (GaAs) which possess photo-Dember effect were selected to be the absorber semiconductor materials. InSb with the EHMR near 100 and very low bandgap at 0.17 eV is a good candidate for middle and far IR Dember photodetectors. Our result shows the InSb Dember detectors at room temperature and without bias exhibit substantial photoresponse at a broad wavelength range (532~1550 nm) . The photocurrent shows a linear increase with the increase of laser intensity. The optimal photoresponsivity and detectivity were obtained under 1064 nm wavelength IR light. In addition, GaAs Dember detectors were also studied. Time-resolution photoconductivity (TRPC) measurements also indicate the photoresponse time of GaAs detector at 265 μs. Scanning photocurrent microscopy (SPCM) measurements have further confirmed that the substantial photoresponse of GaAs detectors is dominated by the Photo-Dember Effect. Temperature-dependent TRPC measurements show the Dember photocurrent was enhanced and response time was speeded up at low temperature.

中文摘要 I ABSTRACT II 誌謝 III 目錄 IV 圖目錄 VII 第一章、緒論 1 1.1 光登伯效應 1 1.2 研究動機 1 1.3 InSb研究背景 4 1.4 GaAs研究背景 5 第二章、實驗方法與原理 6 2.1結構特性檢測 6 2.1.1 X光繞射儀 (X-ray Diffractometer, XRD) 6 2,1.2拉曼散射光谱儀 (Raman scattering spectroscopy) 7 2.1.3 掃描式電子顯微術 (Scanning Electron Microscopy, SEM) 9 2.2 光登伯光偵測器製作 11 2.2.1 元件電極設計 11 2.2.2 光微影術 12 2.2.3 直流磁控濺鍍法 (DC Magnetron Sputter) 15 2.2.4 快速熱退火 18 2.2.5 漆包缐接合 19 2.3 光登伯偵測器電性量測 21 2.3.1霍爾量測系統 (Hall Measurement) 21 2.3.2電流對電壓量測 (Current-Voltage Measurement) 22 2.3.3功率相依之光電導量測 24 2.3.4 環境相依之光電導量測 26 2.3.5高時間解析之光電導量測 (Time-Resolved Photoconductivity, TRPC) 27 2.3.6空間解析之掃描式光電流顯微術 (Scanning photocurrent microscopy, SPCM) 29 第三章、結果與討論 34 3.1 InSb光登伯光偵測器之電性量測 34 3.1.1 電子遷移率量測 34 3.1.2 電流對電壓曲缐量測 35 3.1.3 功率相依光電導量測 38 3.2 InSb光登伯光偵測器之空間解析光電導量測 40 3.2.1 SPCM量測結果 40 3.2.2 光電導機制分析 42 3.2.3 SPCM分析與討論 45 3.3 InSb光登伯光偵測器之製程優化 48 3.3.1 金屬遮罩之分析 48 3.3.2 Si遮罩與光阻之SPCM結果與分析 50 3.4 以GaAs光登伯光偵測器研究光登伯效應 59 3.4.1 材料分析與元件設計 59 3.4.2 SPCM量測結果與分析 61 3.4.3 高時間解析與環境相依之光電導量測結果 66 第四章、結論 72 參考文獻 73

1. Dember, H. Normal and Anomalous Dember Effect. Phys. Z, 32, 554. (1931).
2. Photo–Dember effect - Wikipedia. https://en.wikipedia.org/wiki/Photo%E2%80%93Dember_effect
3. Zeng, L.-H., Wang, M.-Z., Hu, H., Nie, B., Yu, Y.-Q., Wu, C.-Y., Wang, L., Hu, J.-G., Xie, C., & Liang, F.-X. Monolayer graphene/germanium Schottky junction as high-performance self-driven infrared light photodetector. ACS applied materials & interfaces, 5(19), 9362-9366. (2013).
4. Hatch, S. M., Briscoe, J., & Dunn, S. A self‐powered ZnO‐nanorod/CuSCN UV photodetector exhibiting rapid response. Advanced Materials, 25(6), 867-871. (2013).
5. Wu, D., Jiang, Y., Zhang, Y., Yu, Y., Zhu, Z., Lan, X., Li, F., Wu, C., Wang, L., & Luo, L. (2012). Self-powered and fast-speed photodetectors based on CdS: Ga nanoribbon/Au Schottky diodes. Journal of Materials Chemistry, 22(43), 23272-23276. (2012).
6. Li, X., Gao, C., Duan, H., Lu, B., Wang, Y., Chen, L., Zhang, Z., Pan, X., & Xie, E. High‐performance photoelectrochemical‐type self‐powered UV photodetector using epitaxial TiO2/SnO2 branched heterojunction nanostructure. Small, 9(11), 2005-2011. (2013).
7. Piotrowski, J., Galus, W., & Grudzien, M. Near room-temperature IR photo-detectors. Infrared Physics, 31(1), 1-48. (1991).
8. Piotrowski, J., & Rogalski, A. Uncooled long wavelength infrared photon detectors. Infrared Physics & Technology, 46(1-2), 115-131. (2004).
9. Djuric, Z., & Piotrowski, J. Dember IR photodetectors. Solid-State Electronics, 34(3), 265-269. (1991).
10. Cao, G., Zhang, H., Wang, C., & Li, X. Self‐Driving Perovskite Dember Photodetectors. Advanced Optical Materials, 10(5), 2101821. (2022).
11. Hulme, K., & Mullin, J. Indium antimonide—A review of its preparation, properties and device applications. Solid-State Electronics, 5(4), 211-IN210. (1962).
12. Indium antimonide - Wikipedia. https://en.wikipedia.org/wiki/Indium_antimonide
13. Kane, E. O. Band structure of indium antimonide. Journal of Physics and Chemistry of Solids, 1(4), 249-261. (1957).
14. Tanenbaum, M., & Briggs, H. Optical properties of indium antimonide. Physical Review, 91(6), 1561. (1953).
15. Blakemore, J. Semiconducting and other major properties of gallium arsenide. Journal of Applied Physics, 53(10), R123-R181. (1982).
16. Gallium arsenide - Wikipedia. https://en.wikipedia.org/wiki/Gallium_arsenide
17. Pollak, F. H., & Cardona, M. Energy band structure of germanium and gallium arsenide: The kp method. Journal of Physics and Chemistry of Solids, 27(2), 423-425. (1966).
18. Carra, P., Thole, B., Altarelli, M., & Wang, X. X-ray circular dichroism and local magnetic fields. Physical Review Letters, 70(5), 694. (1993).
19. Cullity, B. D., & Stock, S. R. Elements of X-ray diffraction. Prentice Hall Inc. (1993).
20. Beiser, A. Concepts of Modern Physics. McGraw-Hill Education Pvt. Ltd., India. (2002).
21. Flewitt, P., & Wild, R. Physical Methods for Materials Characterization in IOP Publishing Ltd. Techno House. Redcliffe House, Bristol BS1 6NX, UK. (1994).
22. 王驊民. 二硫化鉬層狀半導體歐姆接觸探討. 國立臺灣科技大學光電工程研究所碩士學位論文. (2018).
23. Streetman, B. G., & Banerjee, S. Solid state electronic devices(7th edition global edition). Pearson FT Press, 129. (2016).
24. 吴芳儒. 基於光登伯效應的自供電狄拉克半金屬Cd3As2光偵測器元件. 國立臺灣科技大學光電工程研究所碩士學位論文. (2022).
25. 郭佳紋. 高頻時間解析光電導之單層二硫化鉬半導體特性研究. 國立臺灣科技大學應用科技研究所碩士學位論文. (2021).
26. Chen, R.-S., Wang, W.-C., Chan, C.-H., Hsu, H.-P., Tien, L.-C., & Chen, Y.-J. Photoconductivities in monocrystalline layered V 2 O 5 nanowires grown by physical vapor deposition. Nanoscale Research Letters, 8, 1-8. (2013).
27. Sharma, B. Metal-semiconductor Schottky barrier junctions and their applications. Springer Science & Business Media. (2013).
28. Tung, R. T. Recent advances in Schottky barrier concepts. Materials Science and Engineering: R: Reports, 35(1-3), 1-138. (2001).
29. Lu, X., Sun, L., Jiang, P., & Bao, X. Progress of photodetectors based on the photothermoelectric effect. Advanced Materials, 31(50), 1902044. (2019).
30. Yavarishad, N., Hosseini, T., Kheirandish, E., Weber, C. P., & Kouklin, N. Room-temperature self-powered energy photodetector based on optically induced Seebeck effect in Cd3As2. Applied Physics Express, 10(5), 052201. (2017).

無法下載圖示 全文公開日期 2028/08/07 (校內網路)
全文公開日期 2028/08/07 (校外網路)
全文公開日期 2028/08/07 (國家圖書館:臺灣博碩士論文系統)
QR CODE