簡易檢索 / 詳目顯示

研究生: 楊博淵
Bo-Yuan Yang
論文名稱: 以協調式多點傳輸機制改善LTE-A異質網路間下行傳輸干擾
Combined DPS and JT CoMP Tehcniques to Reduce Interference for Downlink in LTE-A Heterogeneous Networks
指導教授: 黎碧煌
Bih-Hwang Lee
口試委員: 鍾添曜
Tein-Yaw Chung
鄭瑞光
Ray-Guang cheng
吳傳嘉
Chwan-Chia Wu
陳俊良
Jiann-Liang Chen
黎碧煌
Bih-Hwang Lee
學位類別: 碩士
Master
系所名稱: 電資學院 - 電機工程系
Department of Electrical Engineering
論文出版年: 2017
畢業學年度: 105
語文別: 中文
論文頁數: 69
中文關鍵詞: 長期演進技術升級版異質網路協調式多點微微型基地台
外文關鍵詞: LTE-A, Heterogeneous networks, Coordinated multipoint, pico cell
相關次數: 點閱:273下載:7
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

在長程演進技術升級版(Long Term Evolution Advanced; LTE-A)中,異質網路(Heterogeneous networks)用於解決位在訊號品質不佳之建築物內或細胞邊緣的用戶、人口過於密集導致頻寬資源不足的問題,透過布建不同發射功率的小型基地台,以提高建物內訊號強度及頻寬重複使用效率。由於基地台間使用相同頻寬即會互相干擾,因此為避免或減輕干擾情況,基地台會互相協調,此一協調機制又稱協調式多點(Coordinated Multipoint, CoMP)。
本論文目的是在異質網路中利用CoMP機制改善各基地台邊緣用戶的服務品質並提升系統傳輸量,邊緣用戶由於基地台的訊號強度不足以及其他基地台的干擾訊號,使得傳輸效率降低,導致用戶無法達到所需的服務品質,因此分別使用CoMP的動態選擇傳輸點(Dynamic point selection; DPS)降低邊緣用戶接收的干擾,以及聯合傳輸(Joint transmission; JT)提升邊緣用戶接收的訊號強度。
模擬結果顯示,本論文提出的方法與無干擾管理的異質網路比較,能有效提升細胞邊緣用戶接收量93%以及增加整體系統傳輸量59%。當再增加Pico eNB覆蓋範圍,使各個基地台服務用戶數達到一定平衡時,可再進一步增加系統的傳輸量。


In Long Term Evolution Advanced, Heterogeneous networks where low power nodes are overlaid within eNB are used to increase the quality of signal of user equipment which is in the poor signal area and system capacity. By deploying low power nodes in the buildings or hot spots increases the signal strength and frequency reuse. If nodes use same frequency band, Co-channel interference problem will happen. In order to mitigate the Co-channel interference, nodes can coordinate with each other which is called Coordinated Multipoint (CoMP).
In this paper, in order to improve the quality of service of edge users and enhance system throughput in the heterogeneous network, will use the CoMP technology. The transmission efficiency of edge users will be decreased due to the lack of signal strength and the interference from other base stations. Therefore, the DPS of CoMP is used to reduce the interference of edge users and the JT of CoMP is used to enhance the signal strength of edge users.
The simulation results show that the proposed scheme can improve the throughput of edge users 93% and increase the system throughput 59% compared with non-interference management heterogeneous network. When increasing the small eNB coverage, so that the number of base station service users achieve a certain balance, can further increase system throughput.

摘要 iv Abstract v 誌謝 vi 目次 vii 圖目次 x 表目次 xiii 第 一 章 緒論 1 1.1 簡介 1 1.2 研究動機與目的 2 1.3 章節概要 2 第 二 章 LTE-A 概述 3 2.1 LTE-A 簡介 3 2.1.1 系統架構 3 2.1.2 實體傳輸層 (Physical Layer for E-UTRA) 5 2.1.3 LTE排程方式 12 2.2 LTE-A 相關技術 13 2.2.1 強化多重輸入輸出(Enhanced multiple-input multiple-output) 13 2.2.2 載波聚合 (Carrier Aggregation; CA) 13 2.2.3 異質網路 (Heterogeneous Networks; HetNet) 14 2.2.4 協調式多點 (Coordinated multi-point; CoMP) 18 2.2.5 裝置間通訊 (Device to Device communication; D2D) 20 2.3 相關研究 21 第 三 章 協調式多點傳輸策略 23 3.1 研究方法 23 3.2 初始情境設置 25 3.3 用戶根據RSRP選擇服務基地台並回傳CQI 26 3.3.1 用戶選擇服務基地台 27 3.3.2 計算各模式SINR 28 3.3.3 回傳各模式CQI及基地台對照表給基地台 31 3.4 基地台根據回傳資訊以EDF/MT分配資源區塊 33 3.4.1 排程重疊頻段 34 3.4.2 排程不重疊頻段 37 第 四 章 系統模擬與結果 46 4.1 模擬環境與參數 46 4.2 效能評估項目 49 4.3 模擬結果分析與比較 53 4.3.1 CRE Bias = 6 dB 53 4.3.2 增加CRE對系統的影響 59 第 五 章 結論與未來研究 64 參考文獻 65

[1] 3GPP TS 23.401 V15.0.0, “General Packet Radio Service (GPRS) Enhancements for Evolved Universal Terrestrial Radio Access Network (E-UTRAN) Access,” June 2017.
[2] 3GPP TS 36.300 V14.2.0, “Evolved Universal Terrestrial Radio Access (E-UTRA) and Evolved Universal Terrestrial Radio Access Network (E-UTRAN); Overall description; Stage2,” Mar 2017.
[3] “3GPP LTE – Evolved UTRA – Radio Interface Concepts,” Avalable:
http://ecee.colorado.edu/~ecen4242/LTE/radio.htm
[4] A. Ghosh, R. Ratasuk, B. Mondal, N. Mangalvedhe and T. Thomas, “LTE-Advanced: Next-Generation Wireless Broadband Technology,” IEEE Wireless Communications, Vol. 17, No.3, June. 2010.
[5] A. Damnjanovic et al., “A Survey on 3GPP Heterogeneous Networks,” IEEE Communications Magazine, vol. 18, no.3, pp. 10-21, Jun. 2011.
[6] “LTE:Physical layer concept (Frame structure, Resource Block and Resource Element 概念),” Available:
http://xdxdd.blogspot.tw/2012/11/ltephysical-layer-concept-frame.html
[7] 3GPP TS 36.213 V14.3.0, “Evolved Universal Terrestrial Radio Access (E-UTRA); Physical layer procedures,” Mar 2017.
[8] F. Capozzi, G. Piro, L. Grieco, G. Boggia, and P. Camarda, "Downlink packet scheduling in LTE cellular networks: Key design issues and a survey,” IEEE Commun. Surveys Tuts., vol. 15, no. 2, pp. 678-700, 2013.
[9] 3GPP TR 36.814 V9.2.0, “Further advancements for E-UTRA physical layer aspects,” Mar. 2017.
[10] M. Iwamura et al., “Carrier aggregation framework in 3GPP LTE-Advanced [WiMax/LTE Update],” Communication Magazine IEEE, vol 48, no.8, pp. 60-67, August 2010.
[11] V. Genc et al., “IEEE 802.16j Relay-Based Wireless Access Networks: An Overview,” IEEE Trans. Wireless Commun., vol. 15, no. 5, pp. 56-63, Oct. 2008.
[12] K. Loa, C. Wu, S. Sheu, Y. Yuan, M. Chion, D. Huo and L. Xu, “IMT-advanced relay standards [WiMAX/LTE Update],” IEEE Commun. Mag., vol. 48, no. 8, pp. 40-48, 2010.
[13] 3GPP TR 36.806 V9.0.0, “Evolved Universal Terrestrial Radio Access (E-UTRA); Relay archiitectures for E-TURA (LTE-Advanced),” Mar. 2010.
[14] Y. Yang, H. Hu, J. Xu, and G. Mao, “Relay technologies for WiMAX and LTE-Advanced mobile systems,” IEEE Comun. Mag., vol. 47, no. 10, pp. 100-105, 2009.
[15] M. Iwamura, H. Talahashi, and S. Nagata, “Relay technology in LTE-advanced,” NTT DOCOMO Tech. J., vol 18, no.2, pp. 31-36, Jul. 2010.
[16] S. Deb, P.Monogioudis, J. Miernik, and J.P. Seymour, “Algorithms for enhanced inter-cell interference coordination (eICIC) in LTE HetNets,” IEEE/ACM Trans. on Networking, vol. 22, no. 1, pp. 137-150, 2014.
[17] D. López-Pérez, Ï. Güvene, G. de la Roche, M. Kountouris, T. Q. S. Quek, and J. Zhang, “Enhanced intercell interference coordination challenges in heterogeneous networks,” IEEE Commun. Mag., vol. 18, no. 3, pp. 22-30, Jun. 2011
[18] W. Yuanye, and I.P. Klaus, “Performance analysis of enhanced inter-cell interference coordination in LTE-Advanced heterogeneous networks,” IEEE 75th Vehicular Technology Conference (VTC Spring), pp. 1-5, Jul. 2012.
[19] N. Saquib, E. Hossain, and D. I. Kim, “Fractional frequency reuse for interference management LTE-Advanced hetnets,” IEEE Wireless Commun., vol. 20, no. 2, pp. 113-122, Apr. 2013.
[20] R. Irmer et al., “Coordinated multipoint: concepts performance and field trial results,” IEEE Commun. Mag., vol. 49, no. 2, pp. 102-111, Feb. 2011.
[21] M. Sawahashi, Y. Kishiyama, A. Morimoto, D. Nishikawa, and M. Tanno, "Coordinated multipoint transmission/reception techniques for LTE-Advanced: Coordinated and distributed MIMO," IEEE Wireless Commun., vol. 17, no. 3, pp. 26-34, Jun. 2010.
[22] S. Sun, Q. Gao, Y. Peng, Y. Wang, and L. Song, "Interference management through CoMP in 3GPP LTE-advanced networks," IEEE Wireless Commun., vol. 20, no. 1, pp. 59-66, Feb. 2013.
[23] J. Liu, N. Kato, J. Ma, and N. Kadowaki, "Device-to-device communication in LTE-advanced networks: A survey," IEEE Commun. Surveys Tuts., vol. 17, no. 4, pp. 1923-1940, 4th Quart. 2015.
[24] A. Asadi, Q. Wang, and V. Mancuso, "A survey on device-to-device communication in cellular networks," IEEE Commun. Surveys Tuts., vol. 16, no. 4, pp. 1801-1819, Dec. 2014.
[25] W. Zuo, H. Xia, and C. Feng, "A novel coordinated multi-point transmission in dense small cell deployment," Proc. IEEE 26th Annu. Int. Symp. Pers. Indoor Mobile Radio Commun. (PIMRC), pp. 1872-1877, Aug./Sep.2015.
[26] Landou, Samir Kolawolé Akanni, and André Noll Barreto. "Use of CoMP in 4G cellular networks for increased network energy efficiency," Telecommunications (IWT), 2015 International Workshop on. IEEE, 2015.
[27] Choi, Seojoo, et al. "Energy efficiency analysis of downlink CoMP in heterogeneous network considering fronthaul power consumption," Personal, Indoor, and Mobile Radio Communications (PIMRC), 2015 IEEE 26th Annual International Symposium on. IEEE, 2015.
[28] P. Chand, R. Mahapatra, and R. Prakash, "Energy Efficient Performance Analysis of Downlink CoMP in Heterogeneous Wireless Network," Proc. IEEE International Conference on Industrial and Information Systems (ICIIS), pp. 1-5, Dec 2014.
[29] Wang, Mei, Hailun Xia, and Chunyan Feng. "Joint eICIC and dynamic point blanking for energy-efficiency in heterogeneous network," Wireless Communications & Signal Processing (WCSP), 2015 International Conference on. IEEE, 2015.
[30] Feng, Minghai, et al. "Enhanced dynamic cell selection with muting scheme for DL CoMP in LTE-A," Vehicular Technology Conference (VTC 2010-Spring), 2010 IEEE 71st. IEEE, 2010.
[31] 3GPP TSG RAN WG1 Meeting #55bis, R1-090314, NTT DOCOMO, “Investigation on coordinated multipoint transmission schemes on LTE-Advanced downlink,” 2009.
[32] H. L. Maattanen, K. Hamalainen, J. Venalainen, K. Schober, M. Enescu, and M. Valkama, "System-level performance of lte-advanced with joint transmission and dynamic point selection schemes," EURASIP Journal on Advances in Signal Processing, vol. 2012, no. 1, pp. 1-18, 2012.
[33] Md. Shipon Ali, "On the Evolution of Coordinated Multi-Point (CoMP) transmission in LTE-Advanced," International Journal of Future Generation Communication and Networking, vol. 7, no. 4, pp. 91-102, 2014.
[34] M. F. Hossain, J. Huque, A. S. Ahmad, K. S. Munasinghe, and A. Ja-malipour, "Energy Efficiency of Combined DPS and JT CoMP Technique in Downlink LTE-A Cellular Networks," Proc. of IEEE InternationalConference on Communications (ICC), pp. 2206-2211, 2016.
[35] Ahmad, Ahnaf S., Md Jamiul Huque, and Md Farhad Hossain. "A novel CoMP transmission mechanism for the downlink of LTE-A cellular networks," Informatics, Electronics and Vision (ICIEV), 2016 5th International Conference on. IEEE, 2016.
[36] Zarrinkoub, Houman. “Understanding LTE with MATLAB: from mathematical modeling to simulation and prototyping,” John Wiley & Sons, 2014.

QR CODE