簡易檢索 / 詳目顯示

研究生: 陳奕冏
Yi-chiung Chen
論文名稱: 三維度主動式有機發光二極體顯示器之新式電壓編碼畫素電路設計
Novel Voltage Programming Pixel Circuit Design for 3D AMOLED Displays
指導教授: 范慶麟
Ching-Lin Fan
口試委員: 李志堅
Chih-Chien Lee
林保宏
Pao-hung Lin
王錫九
none
顏文正
none
學位類別: 碩士
Master
系所名稱: 電資學院 - 光電工程研究所
Graduate Institute of Electro-Optical Engineering
論文出版年: 2013
畢業學年度: 101
語文別: 英文
論文頁數: 106
中文關鍵詞: 有機發光二極體畫素電路
外文關鍵詞: AMOLED, Pixel Circuit
相關次數: 點閱:272下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

主動式有機發光二極體(AMOLED)由於其優異的特性,近年來受到市場上相當的矚目,像是廣視角、快的反應速度、高對比、高色彩飽和度、和自發光性等等。而在驅動主動式有機發光二極體顯示器之畫素電路部分,低溫複晶矽薄膜電晶體(LTPS-TFT)扮演著一個重要的角色,由於其優異的電流驅動能力,可以使得畫素電路尺寸微縮,進而達到較大的開口率,提升顯示器品質。
然而,低溫複晶矽薄膜電晶體製程過程中,在準分子雷射退火時會造成的電性差異,會使得在相同灰階情況下卻出現電流不一的情況,進而造成顯示器亮度之不均勻,所以開始出現許多補償電路之研究,而近年來此問題也被有效改善。因此,在本篇論文中,我們希望讓補償電路不只補償薄膜電晶體的不均勻性,同時可以具有補償有機發光二極體的亮度衰減及增加三維度(3D)顯示功能。
鑒於以上動機,我們提出了兩個新型補償畫素電路,同時搭載了高品質的同步顯示(Simultaneous emission)3D驅動時脈,這兩個電路分別為4T2C及5T2C,皆經由AIM-SPICE模擬驗證並修改相關參數得到預期之結果。
在4T2C畫素電路中,首先其高頻三維度驅動操作之特性已經由模擬軟體驗證。其平均電流錯誤率在驅動元件臨界電壓偏移±.0.33之情況下為0.376%,及在有機發光二極體及驅動元件臨界電壓同時偏移之最糟情況下為2.97%。還有在由寄生電阻造成的電源電壓下降狀況下,畫素電路也依然能維持穩定的電流供應。由以上敘述顯示,此新型成功的在三維度驅動操作下有效維持畫面均勻度。
在第二個5T2C畫素電路中,我們考慮了有機發光二極體經長時間操作後亮度會衰減的現象去設計補償電路。利用有機發光二極體臨界電壓隨操作時間上升之特性回授補償電流,得已維持亮度。在驅動元件臨界電壓偏移±.0.33之情況下之電流誤差率僅0.967%。在考慮資料線及掃描線之電阻及電容造成的延遲效應,以一個二十八吋面板為假設,分析顯示器四個角落之電流誤差,模擬結果顯示電流誤差率小於0.7%。
由以上結果顯示,在高速驅動時脈下,補償驅動元件及有機發光二極體的能力有如我們所預期。因此,我們相信在此論文所發表的兩個新型畫素電路是有著相當不錯的穩定電流驅動能力且也是相當適合於應用在大尺寸和高解析度的三維度主動式有激發光二極體顯示器面板中。


Recently, active matrix organic light-emitting diode (AMOLED) has attracted a much attention due to its extraordinary properties, such as wide viewing angle, fast response time, high contrast ratio, high color saturation and self-emissive ability. In the driving pixel circuit for AMOLED, low-temperature polycrystalline-silicon thin-film transistors (LTPS-TFTs) plays an important part due to its high current driving capability. Since this high current driving capability, the pixel circuit size can be minimized to reach higher display quality.
However, the various characteristic of LTPS-TFTs due to the excimer laser annealing process, which will further cause the non-uniform driving current under same gray-scale. Hence, many pixel circuit researches are proposed and this issue is effectively ameliorated. Thus, in this thesis, we want to design novel pixel circuits that not only compensate the non-uniformity of TFTs but also the OLED luminance degradation issue, and the stereo 3D effect is also applied in the circuits. Base on above reason, we proposed two compensating pixel circuits with high quality 3D simultaneously emission (SE) driving scheme, 4T2C and 5T2C respectively. Through the parameter modulation, these two circuits achieved the performances what we expected and verified by AIM-SPICE.
In the 4T2C pixel circuit, first the high speed 3D driving is verified by simulator. The current error rate under various threshold voltage of TFT(ΔVTH = ±0.33 V) is 0.376%. In a worst case of both various threshold voltage of OLED and TFTs, current error rate is only 2.97%. In power line I-R drop which was caused by intrinsic resistance, the proposed pixel circuit still offers a stable current. Consequently, this proposed 4T2C pixel circuit maintains the image uniformity effectively under high speed 3D driving.
In the 4T2C pixel circuit, OLED luminance degradation in long-term operation is in consideration. So we utilized the property that the threshold voltage of OLED will increases with operation time, to design a feedback structure. Due to this structure, the OLED current will increases with the threshold voltage of OLED. The current error rate of this pixel circuit under various threshold voltage of TFT(ΔVTH = ±0.33 V) is 0.967%. Furthermore, we simulated an assumed 32 inch display with all resistance and capacitance of signal lines. Simulation results demonstrate that the current error rate of four corners of display is less than 0.7%.
Due to the above simulation results, under high speed driving, the capability of compensation is achieved as what we expected. Hence, we believed these two proposed pixel circuits have excellent current driving capability and it is suitable in large size and high resolution AMOLED displays.

Content 論文摘要I AbstractIII 致謝VI Chapter 1 Introduction 1 1.1Liquid Crystal Display 1 1.2Organic Light Emitting Diode (OLED) 4 1.2.1 What is OLED? 4 1.2.2 OLED structure and operation 6 1.2.3 Advantages of OLED 9 1.3 Stereo displays (Three-dimensional (3D) displays) 15 1.3.1 Stereo vision 15 1.3.2 Stereo (3D) displays 16 1.4 Motivation 27 1.5 Thesis organization 29 Chapter 2 AMOLED driving 30 2.1 Driving device 30 2.1.1 LTPS-TFT 30 2.1.2 AIM-SPICE and Device Model 32 2.2 Driving Method 34 2.2.1 Passive Matrix Addressing 34 2.2.2 Active Matrix Addressing 36 2.2.3 Compensating methods for AMOLED 40 Chapter 3 4T2C Pixel Circuit with Top Emission Structure for 3D AMOLED Displays 42 3.1 Introduction 42 3.2 Proposed Pixel Circuit scheme & operation 44 3.3 Simulation Results 50 3.4 Summary 59 Chapter 4 5T2C AMOLED Pixel Circuit for Compensating Luminance Degradation of OLED60 4.1 Introduction 60 4.2 Proposed Pixel Circuit scheme & operation 61 4.3 Simulation Results 67 4.4 Summary 75 Chapter 5 Conclusion & Future work 76 5.1 Conclusion 76 5.2 Future work 78 References79  

References

Chapter 1
[1.1] C. W. Tang and S. A. VanSlyke, “Organic electroluminescent diodes,” Appl. Phys. Lett., vol. 51, 1987, pp. 913-915.
[1.2] C. Hosokawa, M. Matsuura, M. Eida, K. Fukuoka, H. Tokailin, and T. Kusumoto, “Full-color organic EL display,” in SID Tech. Dig., 1998, pp.7–10.
[1.3] C. W. Lin, D. Z. Peng, R. Lee, Y. F. Shih, C. K. Jan, M. H. Hsieh, S. C. Chang, and Y. M. Tsai, “Advanced poly-Si device and circuitry for AMOLED and high-integration AMLCD,” in Int. Display Manufacturing Conf., 2005, pp. 315–318.
[1.4] H. Nakamura, C. Hosokawa, and T. Kusumoto, “Transient behavior of organic electroluminescent cells,” in Inorganic and Organic Electroluminescence/EL 96 Berlin, 1996, pp. 95.
[1.5] S. H. Jung, W. J. Nam, and M. K. Han, “A new voltage-modulated AMOLED pixel design compensating for threshold voltage variation in poly-Si TFTs,” IEEE Electron Device Lett., vol. 25, no. 10, Oct. 2004, pp. 690–692.
[1.6] Y. H. Tai, B. T. Chen, Y. J. Kuo, C. C. Tsai, K. Y. Chiang, Y. J. Wei, and H. C. Cheng, “A new pixel circuit for driving organic light emitting diodes with low temperature polycrystalline thin film transistors,” J. Display Technol., vol. 1, no. 1, Sep. 2005, pp. 100–104.
[1.7] J. H. Lee, J. H. Kim, and M. K. Han, “A new a-Si:H TFT pixel circuit compensating the threshold voltage shift of a-Si:H TFT and OLED for active matrix OLED,” IEEE Electron Device Lett., vol. 26, no. 12, Dec. 2005, pp. 897–899.
[1.8] C. L. Lin and Y. C. Chen, “A novel LTPS-TFT pixel circuit compensating for TFT threshold-voltage shift and OLED degradation for AMOLED,” IEEE Electron Device Lett., vol. 28, no. 2, Feb. 2007, pp. 129–131.
[1.9] Y. He, R. Hattori, and J. Kanicki, “Four-thin film transistor pixel electrode circuits for active-matrix organic light-emitting displays,” Jpn. J. Appl. Phys., vol. 40, 2001, pp. 1199–1208.
[1.10] M. Mizukami, K. Inukai, H. Yamagata, T. Konuma, T. Nishi, J. Koyama, S. Yamazaki, and T. Tsutsui, “6-bit digital VGA OLED,” in Proc. SID Tech. Dig., 2000, pp. 912–915.
[1.11] Y. C. Lin and H. P. D. Shsieh, “Improvement of brightness uniformity by AC driving scheme for AMOLED displays,” IEEE Electron Device Lett., vol. 25, no. 11, Nov. 2004, pp. 728–730.

Chapter 2
[2.1] C. C. Wu, C W. Chen, C. L. Lin, and C. J. Yang, “Advanced organic light-emitting devices for enhancing display performances,” IEEE Journal of Display Technology, vol. 1, no. 2, pp. 248–266, Dec. 2005.
[2.2] J. J. Lih, C. F. Sung, C. H. Li, T. H. Hsiao, and H. H. Lee, “Comparison of a-Si and poly-Si for AMOLEDs, in SID Tech. Dig., 2004, pp. 1504-1507.
[2.3] Y. K. Lee, K. M. Kim, J. I. Ryu, Y. D. Kim, K. H. Yoo, J. Jang, H. Y. Jeong and D. J. Choo, “A comparison between a-Si:H TFT and poly-Si TFT for a pixel in AMOLED,” J. Korean Physical Soc., vol. 39, pp. S291-S295, 2001.
[2.4] M. J. Powell, “Charge trapping instabilities in amorphous silicon-silicon nitride thin-film transistors ”, Appl. Phys. Lett. ,Vol.43, No.6, 1983, pp.597-599.
[2.5] R. A. Street and C. C. Tsai, “Fast and slow states at the interface of amorphous silicon and silicon nitride,” Appl. Phys. Lett., Vol.48, No.24, 1986, pp.1672-1674.
[2.6] R. E. I. Schropp and J. F. Verwey, “Instability mechanism in hydrogenated amorphous silicon thin-film transistors,” Appl. Phys. Lett., Vol.50, No.26, 1987, pp.185-187.
[2.7] H. Nakamura, C. Hosokawa, and T. Kusumoto, “Transient behavior of organic electroluminescent cells,” in Inorganic and Organic Electroluminescence/EL 96 Berlin, 1996, pp. 95.
[2.8] C. Hosokawa, E. Eida, M. Matsuura, K. Fukuoka, H. Nakamura, and T. Kusumoto, “Organic multicolor EL display with fine pixels,” in Dig. Soc. Information Display Int. Symp., vol. 28, 1997, pp. 1073-1076.
[2.9] S. Xiong, B. Guo, C. Wu, Y. Chen, Y. Hao, Z. Zhou, and H. Yang, “A novel design of sub-frame and current driving method for PM-OLED,” in SID Tech. Dig. 2002, pp. 1174-1177.
[2.10] S. J. Kim and O. K. Kwon, “Low-power driving method and circuit for passive matrix organic electro-luminescent displays,” in Proceedings of International Display Workshops, 2002, pp. 1195-1198.
[2.11] R. M. A. Dawson, Z. Shen, D. A. Furst, S. Connor, J. Hsu, M. G. Kane, R. G. Stewart, A. Ipri, C. N. King, P. J. Green, R. T. Flegal, S. Pearson, W. A. Barrow, E. Dickey, K. Ping, S. Robinson, C. W. Tang, S. Van Slyke, F. Chen, J. Shi, M. H. Lu, and J. C. Sturm, “The impact of the transient response of organic light emitting diodes on the design of active matrix OLED displays,” in IEDM Tech. Dig., 1998, pp. 875-878.
[2.12] C. C. Wu, C W. Chen, C. L. Lin, and C. J. Yang, “Advanced organic light-emitting devices for enhancing display performances,” IEEE Journal of Display Technology, vol. 1, no. 2, , Dec. 2005, pp. 248–266.
[2.13] S. H. Jung, W. J. Nam, and M. K. Han, “A new voltage-modulated AMOLED pixel design compensating for threshold voltage variation in poly-Si TFTs,” IEEE Electron Device Lett., vol. 25, no. 10, Oct. 2004, pp.690–692.
[2.14] A. Nathan, A. Kumar, K. Sakariya, P. Servati, S. Sambandan, and D. Striakhilev, “Amorphous silicon thin film transistor circuit integration for organic LED displays on glass and plastic,” IEEE J. Solid-State Circuits, vol. 39, no. 9, Sep. 2003, pp. 215–222.
[2.15] Y. He, R. Hattori, and J. Kanicki, “Current-source a-Si:H thin-film transistor circuit for active-matrix organic light-emitting displays,” IEEE Electron Device Lett., vol. 21, Nov. 2000, pp. 590–592.
[2.16] J. Goh, J. Jang, K. Cho, and C. Kim, “A new a-Si:H thin-film transistor pixel circuits for active matrix organic light-emitting diodes, ” IEEE Electron Device. Lett., vol. 24, no. 9, Sep. 2003, pp. 583–585.
[2.17] J. H. Lee, B. H. You, W. J. Nam, H. J. Lee, and M. K. Han, “A new a-Si:H TFT pixel design compensating threshold voltage degradation of TFT and OLED,” SID Int. Symp. Dig. Tech. Pap., vol. 35, 2004, pp. 264–267.
[2.18] S. M. Choi, O. K. Kwon, and H. K. Chung, “An improved voltage programmed pixel structure for large size and high resolution AM-OLED displays,” SID Int. Symp. Dig. Tech. Pap., vol. 35, 2004, pp. 260–263.
[2.19] H. Y. Lu, P. T. Liu, T. C. Chang, and S. Chi, “Enhancement of brightness uniformity by a newvoltage-modulated pixel design for AMOLED displays,” IEEE Electron Device Lett., vol. 27, 2006, pp. 743–745.
[2.20] J. H. Lee, S. G. Park, J. H. Jeno, J. C. Goh, J. M. Huh, J. Choi, K. Chung, and M. K. Han, “New Fraction Time Annealing Method For Improving Organic Light Emitting Diode Current Stability of Hydorgenated Amorphous Silicon Thin-Film Transistor Based Active Matrix Organic Light Emitting Didode Backplane,” Jpn. J. Appl. Phys., vol. 46, 2007, pp. 1350–1353.
[2.21] H. S. Shin, W. K. Lee, S. G. Park, S. H. Kuk, and M. K. Han, “Active-Matrix Organic Light Emission Diode Pixel Circuit for Suppressing and Compensating for the Threshold Voltage Degradation of Hydrogenated Amorphous Silicon Thin Film Transistors,” Jpn. J. Appl. Phys., vol. 48, 2009, p. 03B023.
[2.22] C. L. Fan, Y. S. Lin, and Y. W. Liu, “Low Temperature Polycrystalline Silicon Thin Film Transistor Pixel Circuits for Active Matrix Organic Light Emitting Diodes,” IEICE Trans. Electron, vol. E93-C, 2010, p. 712.
[2.23] C. L. Fan, Y. Y. Lin, B. S. Lin, J. Y. Chang, and H. C. Chang, “New Pixel Circuit Compensating Poly-si TFT Threshold-voltage Shift for Driving AMOLED,” Journal of the Korean Physical Society, vol. 56, 2010, p. 1185.
[2.24] C. L. Fan, Y. Y. Lin, J. Y. Chang, B. J. Sun, and Y. W. Liu, “New Low Temperature Polycrystalline Silicon Thin Film Transistor Pixel Circuit for Active Matrix Organic Light Emitting Diode,” Jpn. J. Appl. Phys., vol. 49, 2010.
[2.25] C. L. Fan, H. L. Lai, and J. Y. Chang, “Improvement in Brightness Uniformity by Compensating for the Threshold Voltages of Both the Driving Thin-Film Transistor and the Organic Light-Emitting Diode for Active-Matrix Organic Light-Emitting Diode Displays,” Jpn. J. Appl. Phys., vol. 49, 2010.
[2.26] J. H. Lee, W. J. Nam, S. H. Jung, and M. K. Han, “A new current scaling pixel circuit for AMOLED,” IEEE Electron Device Lett., vol. 25, no. 5, May 2004, pp. 280–282.
[2.27] Y. He, R. Hattori, and J. Kanicki, “Four-Thin Film Transistor Pixel Electrode Circuits for Active-Matrix Organic Light-Emitting Displays,” Jpn. J. Appl. Phys., vol. 40, 2001, pp. 1199–1208.
[2.28] J. H. Lee, W. J. Nam, C. Y. Kim, H. S. Shin, C. D. Kim, and M. K. Han, “New Current-Scaling Pixel Circuit Compensating Non uniform Electrical Characteristics for Active Matrix Organic Light Emitting Diode,” Jpn. J. Appl. Phys., vol. 45, 2006, pp. 4402–4406.
[2.29] H. Lee, J. S. Yoo, C. D. Kim, I. J. Chung, and J. Kanicki, “Novel Current-Scaling Current-Mirror Hydrogenated Amorphous Silicon Thin-Film Transistor Pixel Electrode Circuit with Cascade Capacitor for Active-Matrix Organic Light-Emitting Devices,” Jpn. J. Appl. Phys., vol. 46, 2007, pp. 1343–1349.
[2.30] M. Mizukami, K. Inukai, H. Yamagata, T. Konuma, T. Nishi, J. Koyama, S. Yamazaki, and T. Tsutsui, “6-bit digital VGA OLED,” in Proc. SID Tech. Dig., 2000, pp. 912–915.

Chapter 3
[3.1] M. Stewart, R. S. Howell, L. Pires,M. K. Hatalis,W. Howard,and O. Prache, “Polysilicon VGA active matrix OLED displays—technology and performance,” IEEE International Electron Devices Meeting, pp. 871–874, December 1998
[3.2] R. M. A. Dawson, Z. Shen, D. A. Furst, S. Connor, J. Hsu, M. G. Kane, R. G. Stewart, A. Ipri, C. N. King, P. J. Green, R. T. Flegal, S. Pearson, C. W. Tang, S. Van Slyke, F. Chen, J. Shi, M. H. Lu, and J. C. Sturm, “The impact of the transient response of organic light emitting diodes on the design of active matrix OLED displays,” in IEDM Tech. Dig.,1998, pp. 875–878.
[3.3] C. L. Fan, Y. Y. Lin, B. S. Lin, J. Y. Chang, and H. C. Chang, “New Pixel Circuit Compensating LTPS poly-Si TFT Threshold-Voltage Shift for driving AMOLED,” Journal of the Korean Physical Society., vol. 56, pp. 1185-1189, 2010
[3.4] C. L. Fan, Y. Y. Lin, B. S. Lin, J. Y. Chang, and H. C. Chang, “New Pixel Circuit Compensating LTPS poly-Si TFT Threshold-Voltage Shift for driving AMOLED,” Journal of the Korean Physical Society., vol. 56, pp. 1185-1189, 2010
[3.5] H. Aziz, Z. D. Popovic, N.-X. Hu, A.-M. Hor, and G. Xu, “Degradation mechanism of small molecule-based organic light-emitting devices,” Science ., vol. 283, pp. 1900-1902, 1999
[3.6] J. H. Lee, B. H. You, W. J. Nam, H. J. Lee, M. K. Han, “A new a-Si:H TFT pixel design compensating threshold voltage degradation of TFT and OLED,” In SID Tech Dig., 2004, pp. 264–267.
[3.7] S. H. Jung, W. J. Nam, and M. K. Han, “A New Voltage-Modulated AMOLED Pixel Design Compensating for Threshold Voltage Variation in Poly-Si TFTs,” Proc. IEEE Electron Device Lett. Vol. 25, pp. 690-692, 2004.
[3.8] Y. C. Lin and H. P. D. Shsieh, “Improvement of brightness uniformity by AC driving scheme for AMOLED display,” IEEE Electron Device Lett., vol. 25, no. 11, Nov. 2004, pp. 728–730.
[3.9] C.L Lin, Y.C Chen “A Novel LTPS-TFT Pixel Circuit Compensating for TFT Threshold-Voltage Shift and OLED Degradation for AMOLED,” IEEE Electron Device Lett., vol. 28, no. 2, pp. 129–131, Feb. 2007
[3.10] J. S. Yoon, J. M. Lee, Y. H. Lee, D. H. Oh, T. G. Kim, K. H. Oh, and B.S. Kim, “31_inch FHD AMOLED 3-D TV using emission-switch control method,” in SID Tech. Dig., 2011, pp. 353–356.
[3.11] C. L. Lin, W.Y. Chang, C.C. Hung, and C. Da. Tu, “LTPS-TFT Pixel Circuit to Compensate for OLED Luminance Degradation in Three-Dimensional AMOLED Display,” IEEE Electron Device Lett., vol. 33, no. 5, pp. 700–702, May. 2012
[3.12] C. L. Lin, C. C. Hung, P. Y. Kuo, and M. H. Cheng, “New LTPS Pixel Circuit With AC Driving Method to Reduce OLED Degradation for 3D AMOLED Displays, ” J. Display Technol., vol. 8, no. 12 Dec. 2012
[3.13] B.W. Lee, I. H. Ji, S. M. Han, S. D. Sung, K. S. Shin, J. D. Lee, B. H. Kim, B. H. Berkeley, and S. S. Kim, “Novel simultaneous emission driving scheme for crosstalk-free 3DAMOLED TV,” in Proc. SID Tech. Dig., 2010, pp. 758–761.

Chapter 4
[4.1] S. Ono, K. Miwa, Y. Maekawa, and T. Tsujimura, “VT compensation circuit for AMOLED displays composed of two TFTs and one capacitor,” IEEE Trans. Electron Devices, vol. 54, no. 3, pp. 462–467, Mar. 2007.
[4.2] H. Y. Lu, T. T. Chang, Y. H. Tai, P. T. Liu, and S. Chi, “A new pixel circuit compensating for brightness variation in large size and high resolution AMOLED displays,” J. Display Technol., vol. 3, no. 4, pp. 398–403, Dec. 2007.
[4.3] C. L. Lin and T. T. Tsai, “A novel voltage driving method using 3-TFT pixel circuit for AMOLED,” IEEE Electron Device Lett., vol. 28, no. 6, pp. 489–491, Jun. 2007.
[4.4] M. Bagheri, S. J. Ashtiani, and A. Nathan, “Fast voltage-programmed pixel architecture for AMOLED displays,” J. Display Technol., vol. 6, no. 5, pp. 191–195, May 2010.
[4.5] Y. S. Son, Y. J. Jeon, and G. H. Cho, “Transient charge feedforward driver for high-speed current-mode data driving in active-matrix OLED displays,” IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 57, no. 3, pp. 539– 547, Mar. 2010.
[4.6] P. E. Burrow, S. R. Forrest, T. X. Zhou, and L. Michalski, “Operating lifetime of phosphorescent organic light emitting devices,” Appl. Phys. Lett., vol. 76, no. 18, pp. 2493–2495, May 2000.
[4.7] S. Yujuan, Z. Yi, C. Xinfa, and L. Shiyong, “A simple and effective ac pixel driving circuit for active matrix OLED,” IEEE Trans. Electron Devices, vol. 50, no. 4, pp. 1137–1141, Apr. 2003.
[4.8] G. R. Chaji, C. Ng, A. Nathan, A.Werner, J. Birnstock, O. Schneider, and J. B. Nimoth, “Electrical compensation of OLED luminance degradation,” IEEE Electron Device Lett., vol. 28, no. 12, pp. 1108–1110, Dec. 2007.
[4.9] H. J. In and O. K. Kwon, “External compensation of nonuniform electrical characteristics of thin-film transistors and degradation of OLED devices in AMOLED displays,” IEEE Electron Device Lett., vol. 30, no. 4, pp. 377– 379, Apr. 2009.

Chapter 5
[5.1] W.J. Wu, L. Zhou, R, H, Yao, and J, B, Peng, “A New Voltage-Programmed Pixel Circuit for Enhancing the Uniformity of AMOLED Displays ,” IEEE Electron Device Lett., vol. 32, no. 7, pp. 931–933, July. 2011
[5.2] C. L. Lin, W.Y. Chang, C.C. Hung, and C. Da. Tu, “LTPS-TFT Pixel Circuit to Compensate for OLED Luminance Degradation in Three-Dimensional AMOLED Display,” IEEE Electron Device Lett., vol. 33, no. 5, pp. 700–702, May. 2012

無法下載圖示 全文公開日期 2018/07/23 (校內網路)
全文公開日期 本全文未授權公開 (校外網路)
全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
QR CODE