簡易檢索 / 詳目顯示

研究生: 高肇遠
Chao-yuan Kao
論文名稱: 專利文件與學術論文先驅性之比較與分析
A General Growth Curve Comparison between Patents and Academic Publications
指導教授: 劉顯仲
John S. Liu
口試委員: 盧煜煬
none
何秀青
none
陳曉慧
none
學位類別: 碩士
Master
系所名稱: 管理學院 - 科技管理研究所
Graduate Institute of Technology Management
論文出版年: 2011
畢業學年度: 99
語文別: 中文
論文頁數: 67
中文關鍵詞: 技術預測技術成長曲線專利分析
外文關鍵詞: Technology forecast, S-curve, Growth curve
相關次數: 點閱:233下載:14
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 隨著科技產業技術的快速發展,許多公司與研究機構紛紛利用專利文件與學術論文作為技術預測的樣本,希望能夠從中獲得新技術的資訊,以利開發,取得市場先機。世界上約有90%~95%的研發成果,可以在專利說明書中找到;因此,有效運用專利資訊可縮短研發時間、節省研究經費。又,各國政府於大專院校或研究機構投入大量的研發經費,其所發表的學術論文更是基礎研究最主要的知識載體。本研究透過專利及學術論文成長曲線的分析與比較,試圖歸納兩者間之於各技術領域之行為脈絡與先驅性,協助從事技術預測的企業或研究人員清楚掌握其使用樣本之特性,而更進一步能夠有效率、更有方向性的進行技術預測。
    本研究以醫學、藥學、營建土木、化學、生物科技、能源、電子電機…等數項技術作為研究標的,分別搜集美國專利資料庫之專利文件以及Web of Science資料庫之學術論文。然後計算各技術領域之成長曲線,比較專利文件與學術論文間各項參數之差異,再利用統計檢定,歸納出各領域之一般性原則與特性,以利未來技術預測樣本使用之準確性。
    研究結果顯示,技術成長經常有兩階段發展的情況,並非一次上升,而是階段性的突破。利用專利文件與學術論文作技術成長中點(Midpoint)的預測,時間性上是專利文件早於學術論文。比較專利文件與學術論文之技術成長曲線可發現,技術起始區段係學術論文較早開始發展的;技術之早期成長區段,以專利之成長速率較為劇烈;技術之成長後期與飽和區段,已成熟的技術專利之成長曲線斜率會趨於減緩,學術論文雖亦可見其成長速率減緩,但相較之下則仍略微上升。


    As the technologies and industries develop rapidly, many companies and institutions try to forecast technology in order to be more competitive. Through analyzing patents and academic publications data, it is possible to get some very useful information. It is said that extracting from the patent specification, there will be 90% to 95% knowledge of the research comes out, which means all the research results are almost visible. So, if use the data of patent efficiently, then it is definitely could cut down the time and reduce the expense of the researches. Besides, every country invests a lot into universities and the research institutions for strengthening the power of science and technology. Due to this reason, there are more and more papers formed as academic publications. All the detail records in the academic publications could be also very practical for the further development. As above mentioned, patents and academic publications are both important to represent the trend of technology flow. Both of them have their own advantages and disadvantages for being sample for technology forecasting. This paper aims to compare and analyze the difference between patents and academic publications from different fields of technologies by S-curve. Via the result, researchers could easily catch the characteristic of each sample of technology forecasting. Then, the more successfully and much precise forecast could be performed.

    This paper used several fields of technology as the research data; those are Medicine, Pharmacy, Chemistry, Construction, Energy, Computer science, Electronics and the Bioengineering. Each of them has two kinds of data: patents and academic publications. Patents extracted from United State Patent and Trademark Office, and the academic publications extracted from Web of Science database. Through calculated the growth curves of each technologies, compared the parameters between patent and academic publication and the statistic test, we can get the generalize rules and the characteristics of each fields to help researchers when they are using them to do technology forecast.

    The result indicates that the techniques grow as two sections frequently. It is because of the techniques breakthrough step by step which is so called “discontinuous innovation”. The midpoint between patents and academic publications, statistically, is lead by patent one year on average. Separate the S-curve into three parts, we discovered that in start section, the techniques always start from academic publications; in the earlier-growth section, the growth rate of the patents is much speedy.; in the late- growth-and-saturation section, the patent is always stagnated. On the contrary, the academic publication is comparatively going up with steady speed.

    摘 要 i Abstract ii 目 錄 vi 表 目 錄 viii 圖 目 錄 ix 第壹章 緒 論 1 1.1 研究背景 1 1.2 研究動機與目的 1 1.3 研究範圍 2 1.4 整體架構 3 第貳章 分析方法以及相關文獻回顧 5 2.1 技術預測 5 2.2 專利分析 6 2.2.1 專利分析分類 7 2.3 技術成長曲線 9 2.4 相關文獻探討 12 第參章 研究方法與架構 15 3.1 研究架構 15 3.2 研究方法 16 3.2.1 研究資料 16 3.2.2 資料檢索 18 3.2.3 統計分析 22 3.2.4 技術成長曲線分析 22 第肆章 研究結果與分析 26 4.1 技術成長中點時滯分析 26 4.2 技術成長曲線分析 32 4.2.1 數量分析 32 4.2.2 技術成長曲線區段分析 33 4.2.3 技術成長曲線交叉時點分析 43 4.2.4 技術成長曲線二階段成長曲線分析 44 4.3 領域特殊性分析 46 第伍章 結論與建議 51 5.1. 研究結論 51 5.2. 管理應用 54 5.3. 未來研究建議 55 參考文獻 57

    1. 朱昭銘 (2009),以技術生命週期分析薄膜太陽能產業趨勢之研究,國立中央大學企業管理學系碩士論文。
    2. 冷耀世 (2007),專利實務論,全華圖書股份有限公司。
    3. 吳顯東 (2006),洞見脈絡-技術預測輕鬆上手,臺北市:資策會。
    4. 林伯恒 (2002),專利分析對研發策略規劃之探討-以覆晶技術為例,國立交通大學科技管理研究所碩士論文。
    5. 林俊鴻 (2007),以專利分析為基礎之競合觀點的技術策略規劃-以LTCC技術為例,私立逢甲大學企業管理研究所碩士論文。
    6. 林聖富 (1996),專利資訊與專利檢索,智慧財產權管理,10,15-17。
    7. 周淑婷 (2008),應用專利資訊進行生物辨識產業分析與預測-以指紋、虹膜、靜脈辨識技術為例,中華大學科技管理研究所碩士論文。
    8. 夏文龍 (1998),專利對產業界的價值,智慧財產權管理,16,20-21。
    9. 袁建中、陳坤成 (2008),科技管理:以科技服務透視技術移轉與智慧財產權,臺北市:華泰文化事業股份有限公司。
    10. 徐竣祈 (2008),透過專利、學術論文分析發展趨勢,國立政治大學科技管理研究所碩士論文。
    11. 黃毓瑩 (2009),專利檢索在研發個案之潛在利益-以建築物遮陽板為例,國立台灣科技大學科技管理研究所碩士論文。
    12. 游朝慶 (2009),抗菌敷料主要競爭廠商之專利分析,國立雲林科技大學商管專業學院碩士班碩士論文。
    13. 經濟部 (1994),產業技術白皮書一九九四,臺北市:經濟部技術處。
    14. 經濟部 (2000),千禧年產業技術白皮書特輯-科專成果之回顧與前瞻,臺北市:經濟部技術處。
    15. 陳喜文 (2009),專利分析應用-以微陣列生物晶片為例,國立雲林科技大學商管專業學院碩士班碩士論文。
    16. 陳達仁 (2006),專利檢索與分析,臺北市:經濟部智慧財產局。
    17. 鄭安欽 (2007),新材料之技術預測研究-以奈米陶瓷粉末為例,國立成功大學資源工程學系博士論文。
    18. Andersen, B. (1999), “The hunt for S-shaped growth paths in technological innovation: a patent study”, Evolutionary Economics, Vol. 9, P487-526.
    19. Benqisu, M., Nekhili, R. (2006), “Forecasting emerging technologies with the aid of science and technology databases”, Technological Forecasting & Social Change, Vol. 73, P835-844.
    20. Bernardes, A.T., Albuquerque, E.M. (2003), “Cross-over, thresholds, and interactions between science and technology: lessons for less-developed countries”, Research Policy, Vol. 32, P865-885.
    21. Daim, T. U., Rueda, G., Martin, H., Gerdsri P. (2006), “Forecasting emerging technologies: Use of bibliometrics and patent analysis”, Technological Forecasting & Social Change, Vol. 73, P981-1012.
    22. Dietz, J.S., Bozeman, B. (2005), “Academic careers, patents, and productivity: industry experience as scientific and technical human capital”, Research Policy, Vol.34, P349-367
    23. Gerdsri, N., Daim, T. U. (2008), “Generating intelligence on the research and development progress of emerging technologies using patent and publication information”, Management of Innovation and Technology 2008, P1-6.
    24. Jarvenpaa, H. M., Makinen, S. J., Seppanen, M. (2010), “Patent and publishing activity sequence over a technology’s life cycle”, Technological Forecasting & Social Change, Vol. 78, P 283-293.
    25. Martino, J.P. (1993) “Technological Forecasting for Decision Making”, 3rd edition, New York: McGraw-Hill.
    26. Martino, J.P. (2005) 。產業分析之技術預測方法與實例(袁建中、謝志宏、彭弼聲譯),臺北市:麥格羅。希爾國際股份有限公司。
    27. Meyer-Krahmer, F., Schmoch, U. (1998), “Science-based technologies: university–industry interactions in four fields”, Research Policy, Vol. 27, P835-851.
    28. Meyer, P. S., Yung, J.W., Ausubel, J. H. (1999), A Primer on Logistic Growth and Substitution: The Mathematics of the Loglet Lab Software, Technological Forecasting and Social Change, Vol. 61, P247-271.
    29. Mishra, S., Deshmukh, S.G., Vrat P. (2002), “Matching of technological forecasting technique to a technology”, Vol. 69, P1-27.
    30. Wong, C.Y., Goh, K.L. (2010), “Growth behavior of publications and patents: A comparative study on selected Asian economies”, Journal of Informetrics, Vol. 4, P 460-474.
    31. Schilling, M.A. (2006),科技創新策略管理(溫榮弘譯),美商麥格羅 希爾國際股份有限公司 台灣分公司。
    32. Schmoch, U.(1997), “Indicator and relations between science and technology”, Scientometrics, Vol. 38, P103-116.

    QR CODE