簡易檢索 / 詳目顯示

研究生: 陳柏男
Bo-Nan Chen
論文名稱: 工業用機器人最佳化路徑規劃之研究
A Study on the Optimal Trajectory Planning of Industrial Manipulators
指導教授: 蔡高岳
Kao-Yueh Tsai
口試委員: 石伊蓓
none
王勵群
none
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2016
畢業學年度: 104
語文別: 中文
論文頁數: 77
中文關鍵詞: 六軸串聯式機器人最佳化路徑規劃
外文關鍵詞: 6 axis industrial manipulator, optimal trajectory planning
相關次數: 點閱:162下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

因應自動化之需求目前台灣很多大企業皆積極開發工業用機器人。速度及精密度為衡量機器人性能之兩個重要指標,本文將提出一成本較低且易於使用之方法改善這兩項指標,除了設計新機器人之外所提出之方法亦可用來改善現有機器人之性能。一般機器人於工作空間中進行路徑規劃時首先需求得路徑上一些指定點之反位移解,其次再以連續曲線連結軸位移空間中反位移解所對應之點,除了指定點之外此軸位移空間之曲線所產生真正工作空間中之路徑會偏離原規劃路徑。雖然增加指定點之數目可提高路徑之準確度,但是所取之數目愈多則愈費時而降低機器人之效率。本文將研究如何在不增加指定點數目之條件下減少規劃路徑之偏移量。首先探討那些因素會影響偏移量並發現改變指定點間之相對位置可有效的減少誤差、其次以改變指定點相對位置為基礎提出方法搜尋最佳路徑。當指定點數目不變時可減少路徑誤差,若給予一路徑所能允許之誤差量時則可減少指定點數目以提高生產效率,此外所提出之方法亦可用來搜尋機器人與待組裝物件間之最佳相對位置。


Recently, many big corporations develop their own industrial manipulators for the need of automation. Speed and accuracy are two of the most important criteria in the design of manipulators. This work presents simple and low-cost methods to improve these two properties. The methods can be used for new or existing manipulators. In trajectory planning, most industrial manipulators solve the inverse kinematics at some points on a path in the task space and then connect the related points in joint space using continuous curves. Except for the specified points in joint space corresponding to the inverse kinematic solutions, the images in task space for other points on the curves usually deviate from the trajectory. A more accurate trajectory can be obtained by increasing the number of the specified points, but more specified points will reduce the speed of a manipulator. How to reduce the deviation errors without increasing the number of the specified points is investigated in this work. Factors that affect the deviation errors are studied and the results show that adjusting the related positions of the specified points can significantly reduce the errors. Methods based on the adjustments are then proposed to search for the optimal trajectory. The methods can minimize the errors without increasing the numbers of specified points, or minimize the number of the specified points to increase the speed when the maximum allowed error is given. The methods can also be used to determine the best relative position between the manipulator and the assembly parts.

中文摘要 I Abstract II 誌謝 III 目錄 IV 圖目錄 VI 表目錄 VIII 第一章 緒論 1 1.1研究動機 1 1.2文獻回顧 2 1.3本文架構 4 第二章 理論基礎 5 2.1連桿參數定義 5 2.2 Denavit-Hartenberg齊次轉換矩陣 6 2.3尤拉角 8 2.4六軸串聯式機器人反位移分析 9 2.5機器人速度、角速度分析 13 2.6基因演算法(Genetic Algorithm) 15 第三章 運動分析及路徑規劃 18 3.1機器人之路徑及方位誤差 19 3.2參考點間相對位置之調整 21 3.3以誤差比值調整參考點間距 23 3.4數值範例 26 3.5小結 41 第四章 路徑最佳化 43 4.1最佳化基本概念 43 4.2最佳化結果 46 4.3容許誤差與機器人最佳相對位置 54 4.4小結 60 第五章 結論與未來展望 62 參考文獻 64

[1] Korayem, M. H., Irani, M., Charesaz, A., Korayem, A. H., Hashemi, A., 2012, “Trajectory Planning of Mobile Manipulators Using Dynamic Programming Approach,” Robotica, 31(04), pp. 643-656.
[2] Xiao, Y., Du, Z., Dong, W., 2012, “Smooth and near Time‐Optimal Trajectory Planning of Industrial Robots for Online Applications,” Industrial Robot: An International Journal, 39(2), pp. 169-177.
[3] Bazaz, S. A., Tondu, B., 1999, “Minimum Time on-Line Joint Trajectory Generator Based on Low Order Spline Method for Industrial Manipulators,” Robotics and Autonomous Systems, 29(4), pp. 257-268.
[4] Piazzi, A., Visioli, A., 2000, “Global Minimum-Jerk Trajectory Planning of Robot Manipulators,” IEEE Transactions on Industrial Electronics, 47(1), pp. 140-149.
[5] Constantinescu, D., Croft, E. A., 2000, “Smooth and Time-Optimal Trajectory Planning for Industrial Manipulators Along Specified Paths,” Journal of Robotic Systems, 17(5), pp. 233-249.
[6] Gasparetto, A., Zanotto, V., 2007, “A New Method for Smooth Trajectory Planning of Robot Manipulators,” Mechanism and Machine Theory, 42(4), pp. 455-471.
[7] Pellegrinelli, S., Borgia, S., Pedrocchi, N., Villagrossi, E., Bianchi, G., Tosatti, L. M., 2015, “Minimization of the Energy Consumption in Motion Planning for Single-Robot Tasks,” Procedia CIRP, Vol. 29, pp. 354-359.
[8] Garg, D. P., Kumar, M., 2002, “Optimization Techniques Applied to Multiple Manipulators for Path Planning and Torque Minimization,” Engineering Applications of Artificial Intelligence, 15(3-4), pp. 241-252.
[9] Saravanan, R., Ramabalan, S., 2008, “Evolutionary Minimum Cost Trajectory Planning for Industrial Robots,” Journal of Intelligent and Robotic Systems, 52(1), pp. 45-77.
[10] Monteiro, D. C., Madrid, M. K., 1999, “Planning of Robot Trajectories with Genetic Algorithms,” pp. 223-228.
[11] Menasri, R., Oulhadj, H., Daachi, B., Nakib, A., Siarry, P., 2014, “A Genetic Algorithm Designed for Robot Trajectory Planning,” pp. 228-233.
[12] Liu, Z., Huang, P., Yan, J., Liu, G., 2009, “Multi-Objective Genetic Algorithms for Trajectory Optimization of Space Manipulator,” pp. 2810-2815.
[13] Ang, M. C., Pham, D. T., Ng, K. W., 2009, “Minimum-Time Motion Planning for a Robot Arm Using the Bees Algorithm,” pp. 487-492.
[14] Erdős, G., Kardos, C., Kemény, Z., Kovács, A., Váncza, J., 2015, “Process Planning and Offline Programming for Robotic Remote Laser Welding Systems,” International Journal of Computer Integrated Manufacturing, pp. 1-20.
[15] Franks, J., Huo, L., Baron, L., 2008, “The Joint‐Limits and Singularity Avoidance in Robotic Welding,” Industrial Robot: An International Journal, 35(5), pp. 456-464.
[16] Norberto Pires, J., José Lima, E., Queiroz Bracarense, A., 2009, “Trajectory Generation in Robotic Shielded Metal Arc Welding During Execution Time,” Industrial Robot: An International Journal, 36(1), pp. 19-26.
[17] Wen, G., Xu, L., He, F., 2009, “Offline Kinematics Simulation of 6-Dof Welding Robot,” pp. 283-286.
[18] Qin, J., Leonard, F., Abba, G., 2016, “Real-Time Trajectory Compensation in Robotic Friction Stir Welding Using State Estimators,” IEEE Transactions on Control Systems Technology, pp. 1-8.
[19] 簡輔成, 2015, 工業用機器人之路徑規劃與誤差分析, 碩士論文, 國立台灣科技大學研究所, 台北,台灣.
[20] Kuka Co., 2016; Available from: http://www.kuka-robotics.com/.

無法下載圖示 全文公開日期 2021/07/13 (校內網路)
全文公開日期 本全文未授權公開 (校外網路)
全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
QR CODE