簡易檢索 / 詳目顯示

研究生: 蔡博至
Po-Chih Tsai
論文名稱: 積層製造之多功能可見光樹脂開發與口贋復體的應用
The Development and Applications of Multifunction Visible-Light Resin for Dental Temporary dentures in Additive Manufacturing
指導教授: 蘇威年
Wei-Nien Su
黃炳照
Bing-Joe Hwang
口試委員: 鄭正元
Jeng-Ywan Jeng
學位類別: 碩士
Master
系所名稱: 應用科技學院 - 應用科技研究所
Graduate Institute of Applied Science and Technology
論文出版年: 2016
畢業學年度: 104
語文別: 中文
論文頁數: 110
中文關鍵詞: 可見光固化樹脂可見光起始劑TX-EC口腔贋復體可摘式局部義齒下照式投影型可見光固化系統口腔醫學材料
外文關鍵詞: Visible light curing resin, Visible light photoinitiators, TX-EC, Removable partial dentures, Upward-Lighting of DLP curing system, Stomatology materials
相關次數: 點閱:275下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究主要以開發可見光固化口腔贋復體樹脂,以強化樹脂特性及符合生物相容性為主軸並應用於3D列印,成功合成同時具有所有口腔贋復體所兼具特性的可見光固化口腔贋復體樹脂。
    首先以樹脂之主要關鍵材料–光起始劑之特性研究開始,鑒於乙基咔唑硫雜蔥酮 (Thioxanthone-Ethylcarbazole, TX-EC) 在可見區具有優異的吸收特性,其最大波長接近450 nm且延伸至475 nm,先透過優化及簡化合成步驟製備出大量的TX-EC,接著分別以不同數量的官能基樹脂單體交互搭配,藉由固定參數,進行光反應動力學分析及尺寸精準度測試,由TX-EC (1 %) 搭配三官能基單體 VFC_3DV1 (3D) 可以獲得最佳的光聚合轉化率及尺寸精準度。
    考量牙科應用情境,對於口腔贋復體材料有機械、物理等性質特性的要求接著以甲基丙烯酸三氟乙酯 (Trifluoroethyl methacrylate) 進行樹脂韌性強化,藉由FTIR、三點彎曲測試以及接觸角測試結果得知在添加量29 wt% (氟含量0.1 wt%)中有最佳結果。延續上述結果將二氧化鋯奈米顆粒作為填料添加在稀釋後的樹脂以增加其在機械強在度上的表現,透過探討二氧化鋯在樹脂裡的分散性、色度、維克氏硬度機與旋轉磨耗測試,40 wt%的二氧化鋯整體複合材料有最佳表現。
    最後以小鼠雜交瘤細胞 (7F2 Cell) 作為欲培養之細胞測試生物相容性,並與培養品標準品材料 (Tissue culture polystyrene, TCPS) 以及商用口腔贋復樹脂TEMPRON的生物相容性做比較,最後結果顯示本研究欲開發之可見光固化口腔贋復體樹脂有極度良好的生物相容性,具備於口腔贋復體應用的潛力。


    The work is to develop visible light photo-curing resin for dental applications by additive manufacturing, where the main challenges are to improve mechanical properties and biocompatibility of the resin formulation. After a series of synthetic steps and material modifications, the physical, chemical and mechanical properties of photo-curable resin has been verified and compared against a commonly available commercial one.
    Thioxanthone-Ethylcarbazole, as known as the photoinitiator, has a quite good absorption property the in visible light region, with the maximum wavelength ranging from 450 nm to 475 nm. The original synthetic steps of TX-EC have been simplified with improved yield. It was followed polymerization testing by mixing several types of monomers with various mutli-functional group and different percentage of TX-EC. The kinetics of the photopolymerization reaction and shrinkage test were the major concerns. These results showed that 3-functional groups monomer mixed with 1 wt% photoinitiator (VFC_3DV1 (3D) TX-EC) could produce cured resin with the highest conversion and dimensional accuracy within realistic light exposure time.
    Considering the practical requirements of dental or orthodontic materials on materials, trifluoroethyl methacrylate was selected as the surface modifying agent to optimize the fracture toughness. In addition, by taking advantages of unique property of fluorine, it was also envisaged to include the self-cleaning effect into the resin after modification. After FTIR measurement, three point bending and contact angle tests, the result showed that 29 wt% of trifluoroethyl methacrylate ( 0.1 wt% of Fluorine content) could produce the best result. Next, zirconium dioxide nanoparticles were applied as a filler and reinforce the mechanical properties of the composite resin. By studying the mixing effect, chromaticity coordinates, spectrophotometer, Vickers hardness test and rotary abrasive test, it was found that addition of 40 wt% Zirconium dioxide was able to achieve the optimum results.
    Ultimately, biocompatibility test was conducted. 7F2 cells were cultured in the wells containing standard tissue culture polystyrene (TCPS) , commercial temporary denture resin and the resin composite in final composition, respectively. From the results, the developed resin (3DF_Zr) in this study has surpassed the counterparts and demonstrated excellent bio-compatibility. The developed resin formulation has shown great potential for dental application, especially the fabrication of customized prostheses by additive manufacturing.

    摘要 Abstract III 誌謝 V 目錄 VI 圖索引 XI 表索引 XIII 第1章 緒論 1 1.1. 前言 1 1.2. 研究動機與目的 4 1.3. 研究方法 6 第2章 文獻回顧 8 2.1. 3D列印技術-立體光固化成型 (Stereolithography, SLA) 8 2.2. 光固化樹脂 14 2.2.1. 光固化樹脂之誕生 14 2.2.2. 光固化樹脂之特性 16 2.2.3. 光固化樹脂之組成 19 2.2.4. 光固化樹脂之反應機制 21 2.3. 自由基奪氫型可見光起始劑 23 2.4. 臨時牙橋牙冠 (Temporary crown and bridge) 25 2.5. 理想臨時牙橋牙冠製作 30 2.5.1. 顏色穩定性方面 30 2.5.2. 邊緣密合度方面 31 2.5.3. 表面硬度方面 31 2.5.4. 斷裂強度方面 31 2.5.5. 抗磨耗度方面 32 2.5.6. 生物相容性 32 第3章 實驗 34 3.1. 實驗架構 34 3.2. 實驗儀器 35 3.3. 實驗藥品 37 3.4. 實驗步驟 39 3.4.1. 可見光起始劑之合成 39 3.4.2. 樹脂比例之調配以及樹脂之選擇 41 3.4.3. 額外添加劑以及填料選擇 43 3.4.4. 二氧化鋯的表面處理 43 3.5. 合成之光起始劑材料鑑定與材料分析 45 3.5.1. 核磁共振儀 (NMR) 45 3.5.2. 傅立葉轉換紅外線光譜儀 (FTIR) 45 3.5.3. 質譜儀 (MS) 46 3.5.4. 紫外光-可見光吸收光譜儀 (UV-Vis) 47 3.5.5. 光照式示差掃描熱分析儀 (PDSC) 47 3.5.6. 熱重分析儀 (TGA) 48 3.5.7. 場發式掃描式電子顯微鏡 (FESEM) 49 3.6. 下照式投影型可見光固化系統 49 3.7. 材料機械性質 53 3.7.1. 樹脂收縮度 (Shrinkage of resin) 53 3.7.2. 維克氏硬度機 (Vickers-Hardness) 53 3.7.3. 旋轉磨耗測試 (Rotary wearing test) 54 3.7.4. 撓曲試驗 (三點彎曲試驗, Three point bending test) 56 3.7.5. 接觸角測試 (Contact angle) 57 3.7.6. 顏色穩定度測試 (Characteristic of resin color) 58 3.7.7. 生物相容性 (Biocompatibility test) 60 第4章 結果與討論 61 4.1. 實驗合成方法之優化 61 4.2. 光起始劑之基本結構鑑定 62 4.2.1. 光起始劑分子結構之鑑定 63 4.2.2. 光起始劑官能基之鑑定 63 4.2.3. 光起始劑分子質量之鑑定 65 4.3. 光起始劑之性質鑑定 66 4.4. 可見光固化樹脂選擇 67 4.4.1. 不同濃度光起始劑對單體之C=C聚合轉化率 69 4.4.2. 不同濃度光起始劑對單體之重量聚合轉化率 71 4.4.3. 基礎樹脂光固化收縮精準度 73 4.4.4. 樹脂固化後之熱穩定性探討 77 4.5. 樹脂結構韌性強化 80 4.5.1. 樹脂結構官能基鑑定 80 4.5.2. 樹脂撓曲強度 (Flexural strength) 82 4.5.3. 樹脂接觸角試驗 (Contact angle) 85 4.6. 樹脂機械強度強化 88 4.6.1. 填料混摻分散性 88 4.6.2. 表面硬度 90 4.6.3. 旋轉磨耗試驗 91 4.6.4. 顏色穩定度 92 4.7. 生物相容性 97 第5章 結論 99 未來展望 103 參考文獻 105

    [1] 林鼎勝, "三度空間科技:3D列印的發展現況," 科學發展, vol. 503, pp. 32-37, 2014.
    [2] P. J. Farah JW, "Provisional restorations.," Dental Advisor, pp. 1-8, 1992.
    [3] M. S. Hagge, J. S. Lindemuth, and A. G. Jones, "Shear bond strength of bis-acryl composite provisional material repaired with flowable composite," J Esthet Restor Dent, vol. 14, pp. 47-52, 2002.
    [4] A. H. Tjan, B. E. Grant, and M. F. Godfrey, 3rd, "Temperature rise in the pulp chamber during fabrication of provisional crowns," J Prosthet Dent, vol. 62, pp. 622-6, Dec 1989.
    [5] R. Grajower, S. Shaharbani, and E. Kaufman, "Temperature rise in pulp chamber during fabrication of temporary self-curing resin crowns," J Prosthet Dent, vol. 41, pp. 535-40, May 1979.
    [6] C. GJ., "Provisional restorations for fixed prosthodontics.," J Am Dent Assoc, vol. 127 (2) , pp. 249-52, 1996.
    [7] H. Kodama, "Automatic method for fabricating a three‐dimensional plastic model with photo‐hardening polymer," Review of Scientific Instruments, vol. 52, pp. 1770-1773, 1981.
    [8] R. Noorani, Rapid prototyping: principles and applications: John Wiley & Sons Incorporated, 2006.
    [9] P. F. Jacobs, Stereolithography and other RP&M technologies: from rapid prototyping to rapid tooling: Society of Manufacturing Engineers, 1995.
    [10] D. Kochan, Solid freeform manufacturing: advanced rapid prototyping: Elsevier Science Inc., 1993.
    [11] P. F. Jacobs, Rapid prototyping & manufacturing: fundamentals of stereolithography: Society of Manufacturing Engineers, 1992.
    [12] D. Pham and R. Gault, "A comparison of rapid prototyping technologies," International Journal of Machine Tools and Manufacture, vol. 38, pp. 1257-1287, 1998.
    [13] H. Humphreys and D. Wimpenny, "Comparison of laser-based rapid prototyping techniques," in Seventh International Conference on Laser and Laser Information Technologies, 2002, pp. 407-413.
    [14] 陳朝光、陳銘崑, "工程圖學," 高立圖書, 1994.
    [15] Gebhardt、曹志清, "Rapid Prototyping," 2003.
    [16] 林敬智等人, "雷射積層製造技術於塑膠射出模具產業之應用," 機械工業雜誌359期,工研院, 2013.
    [17] 鄭育承, "乙基咔唑硫雜蔥酮可見光起始劑於光固化系統之應用," 國立台灣科技大學化學工程系 碩士學位論文, 2015.
    [18] 陳彥名, "應用CAD軟體API與快速成型技術製作義肢承筒," 國立成功大學機械工程學系 碩士論文, 2006.
    [19] 陳奇毅, "UV Curable樹脂於不同波長之反應探討," 第十八屆纖維紡織科技研討會 論文集, p. CP008, 2002.
    [20] 張上鎮, "紫外光硬化塗料與塗裝," 塗料與塗裝技術, vol. 61, pp. 87-90, 2005.
    [21] 劉建良, "UV Curing 發展簡介及應用," 化工科技與商情, vol. 41, pp. 1-4, 2003.
    [22] 林和玫, "陽離子型UV 硬化技術與應用," 光電電子元件及製程用感光材料技術專題, vol. 21, pp. 41-47, 2005.
    [23] V. F., "The provisional restoration.," Dent Clin North Am, vol. 31, pp. 363-381, 1987.
    [24] D. D. Ireland MF, Breeding LC and Ramp MH, "In vitro mechanical property comparison of four resins used for fabrication of provisional fixed restorations.," J Prosthet Dent, vol. 80, pp. 158-62, 1998.
    [25] E. S and T. DP, "Processed acrylic resin provisional restoration with lingual cast metal framework.," J Prosthet Dent, vol. 79, pp. 484-488, 1998.
    [26] 黃錫裕, "UV Curable PU 之光硬化動力學分析," 台北科技大學有機高分子研究所 碩士論文, 2004.
    [27] 林瑜平, "精密塗佈製程之光-紫外線硬化技術之應用," 工業材料雜誌, vol. 219, pp. 102-108, 2005.
    [28] 謝添壽、陳曼玲等, "ODF 封膠材料技術," vol. 214 pp. 176-181, 2005.
    [29] C. Decker, "Kinetic study and new applications of UV radiation curing," Macromolecular Rapid Communications, vol. 23, pp. 1067-1093, 2002.
    [30] 陳奇毅, "UV Curable PU 樹脂於不同波長之反應性探討," 國立臺北科技大學有機高分子研究所 碩士論文, 2002.
    [31] Y. Yagci, S. Jockusch, and N. J. Turro, "Photoinitiated Polymerization: Advances, Challenges, and Opportunities," Macromolecules, vol. 43, pp. 6245-6260, 2010.
    [32] N. Arsu and I. Reetz, "In Handbook of Vinyl Polymers: Radical Polymerization, Process, and Technology, ; Mishra, M. K.; Yagci, Y., Eds," ed: CRC Press, Taylor and Francis Group: Boca Raton, 2009.
    [33] R. Davidson, "The chemistry of excited complexes: a survey of reactions," Adv. Phys. Org. Chem, vol. 19, 1983.
    [34] D. Tunc and Y. Yagci, "Thioxanthone-ethylcarbazole as a soluble visible light photoinitiator for free radical and free radical promoted cationic polymerizations," Polymer Chemistry, vol. 2, pp. 2557-2563, 2011.
    [35] R. G. Luthardt, M. Stossel, M. Hinz, and R. Vollandt, "Clinical performance and periodontal outcome of temporary crowns and fixed partial dentures: A randomized clinical trial," J Prosthet Dent, vol. 83, pp. 32-9, Jan 2000.
    [36] C. L. Davidson and A. J. Feilzer, "Polymerization shrinkage and polymerization shrinkage stress in polymer-based restoratives," Journal of Dentistry, vol. 25, pp. 435-440, Nov 1997.
    [37] J. S. Rees and P. H. Jacobsen, "The polymerization shrinkage of composite resins," Dental Materials, vol. 5, pp. 41-44, 1989.
    [38] M. B. Moulding, R. W. Loney, and R. G. Ritsco, "Marginal accuracy of provisional restorations fabricated by different techniques," Int J Prosthodont, vol. 7, pp. 468-72, Sep-Oct 1994.
    [39] J. J. L. Monday and D. Blais, "Marginal adaptation of provisional acrylic resin crowns," The Journal of Prosthetic Dentistry, vol. 54, pp. 194-197, 1985.
    [40] R. J. Dubois, P. Kyriakakis, S. Weiner, and T. K. Vaidyanathan, "Effects of occlusal loading and thermocycling on the marginal gaps of light-polymerized and autopolymerized resin provisional crowns," J Prosthet Dent, vol. 82, pp. 161-6, Aug 1999.
    [41] A. H. Tjan, J. Castelnuovo, and G. Shiotsu, "Marginal fidelity of crowns fabricated from six proprietary provisional materials," J Prosthet Dent, vol. 77, pp. 482-5, May 1997.
    [42] S. A. Yannikakis, A. J. Zissis, G. L. Polyzois, and C. Caroni, "Color stability of provisional resin restorative materials," The Journal of Prosthetic Dentistry, vol. 80, pp. 533-539, 1998.
    [43] R. Scotti, S. C. Mascellani, and F. Forniti, "The in vitro color stability of acrylic resins for provisional restorations," Int J Prosthodont, vol. 10, pp. 164-8, Mar-Apr 1997.
    [44] U. C. a. R. IE, " Staining of resin-based veneering materials with coffee and tea. ," Quintessence Int, vol. 22, pp. 377-386, 1991.
    [45] J. H. Koumjian and A. Nimmo, "Evaluation of fracture resistance of resins used for provisional restorations," The Journal of Prosthetic Dentistry, vol. 64, pp. 654-657, 1990.
    [46] W. R. Larson, D. L. Dixon, S. A. Aquilino, and J. M. Clancy, "The effect of carbon graphite fiber reinforcement on the strength of provisional crown and fixed partial denture resins," J Prosthet Dent, vol. 66, pp. 816-20, Dec 1991.
    [47] M. LH, "Wear in dentistry-current terminology.," J Dent vol. 20, pp. 140-144, 1992.
    [48] C. N. Reid, J. Fisher, and P. H. Jacobsen, "Fatigue and wear of dental materials," J Dent, vol. 18, pp. 209-15, Aug 1990.
    [49] M. Z. A. M. Sulong and R. A. Aziz, "Wear of materials used in dentistry: A review of the literature," The Journal of Prosthetic Dentistry, vol. 63, pp. 342-349, 1990.
    [50] H. Tsuchiya, Y. Hoshino, K. Tajima, and N. Takagi, "Leaching and cytotoxicity of formaldehyde and methyl methacrylate from acrylic resin denture base materials," J Prosthet Dent, vol. 71, pp. 618-24, Jun 1994.
    [51] D. J. Barron, G. S. Schuster, G. B. Caughman, and C. A. Lefebvre, "Biocompatibility of visible light-polymerized denture base resins," Int J Prosthodont, vol. 6, pp. 495-501, Sep-Oct 1993.
    [52] S. Baker, S. C. Brooks, and D. M. Walker, "The release of residual monomeric methyl methacrylate from acrylic appliances in the human mouth: an assay for monomer in saliva," J Dent Res, vol. 67, pp. 1295-9, Oct 1988.
    [53] S. A. Yannikakis, A. J. Zissis, G. L. Polyzois, and C. Caroni, "Color stability of provisional resin restorative materials," J Prosthet Dent, vol. 80, pp. 533-9, Nov 1998.
    [54] R. L. Wang, B. K. Moore, C. J. Goodacre, M. L. Swartz, and C. J. Andres, "A comparison of resins for fabricating provisional fixed restorations," Int J Prosthodont, vol. 2, pp. 173-84, Mar-Apr 1989.
    [55] A. M. Diaz-Arnold, J. T. Dunne, and A. H. Jones, "Microhardness of provisional fixed prosthodontic materials," J Prosthet Dent, vol. 82, pp. 525-8, Nov 1999.
    [56] Y. I. Osman and C. P. Owen, "Flexural strength of provisional restorative materials," The Journal of Prosthetic Dentistry, vol. 70, pp. 94-96, 1993.
    [57] B. J. Crispin and A. A. Caputo, "Color stability of temporary restorative materials," The Journal of Prosthetic Dentistry, vol. 42, pp. 27-33, 1979.
    [58] X. Wang, J. M. Powers, and M. E. Connelly, "Color Stability of Heat-Activated and Chemically Activated Fluid Resin Acrylics," Journal of Prosthodontics, vol. 5, pp. 266-269, 1996.
    [59] K. JH and H. JB, " Marginal accuracy of provisional restorative materials. ," J Prosthet Dent vol. 63, pp. 639-642, 1990.
    [60] H. FM. and H. CC., "Residual monomer releasing from acrylic denture base in water. ," Chin Dent J vol. 19, pp. 17-22, 2000.
    [61] H. FM. and T. KW., "Cytotoxic evaluation of various types of denture base resins.," 2001.
    [62] 經濟部標準檢驗局, "標準檢驗局公布市售牙膏商品檢測結果," 2013.
    [63] 程品皓, "鋰離子電池添加劑之開發," 國立台灣科技大學化學工程系 碩士學位論文, 2013.
    [64] 科技部高瞻自然科學教學平台, 科學 Online, 2011.
    [65] 劉俊謙, "應用色差及濃度量測學於CIE色差公式之補強修正研究," 中國文化大學資訊傳播研究所碩士論文, 2008.
    [66] 張軍堯, "關於牙科用比色板的兩三事," The Academy of Prosthetic Dentistry, Republic of China, pp. 26-28.
    [67] G. M. Johnson and M. D. Fairchild, "A top down description of S-CIELAB and CIEDE2000," Color Research & Application, vol. 28, pp. 425-435, 2003.
    [68] 財團法人塑膠工業技術發展中心, "色差計的用途及原理," 2008.
    [69] "蓮花效應的原理," 原子世界.

    QR CODE