簡易檢索 / 詳目顯示

研究生: 陳冠宇
Kuan-Yu Chen
論文名稱: 以開環歧化聚合降冰片烯、四苯乙烯及其衍生物聚合物的合成與表徵
Synthesis and Characterization of the Polymers Containing Norbornene, Tetraphenylethene, and Tetraphenylethene Derivatives by Ring-Opening Metathesis Polymerization
指導教授: 游進陽
Chin-Yang Yu
口試委員: 施劭儒
Shao-Ju Shih
王丞浩
Cheng-Hao Wang
學位類別: 碩士
Master
系所名稱: 工程學院 - 材料科學與工程系
Department of Materials Science and Engineering
論文出版年: 2023
畢業學年度: 111
語文別: 英文
論文頁數: 120
中文關鍵詞: 降冰片烯四苯乙烯硝化四苯乙烯開環易位聚合聚集誘導發光
外文關鍵詞: norbornene, tetraphenylethene, nitrated tetraphenylethene, ring-opening metathesis polymerization, aggregation-induced emission
相關次數: 點閱:574下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本研究重點關注降冰片烯基聚合物的合成和表徵,包括均聚物、二嵌段共聚物和無規共聚物。對含有四苯乙烯或硝化四苯乙烯的降冰片烯進行開環複分解聚合。通過利用三代催化劑並仔細選擇單體,可以有效控制所得聚合物的平均分子量。此外,這種可控聚合過程可以生產具有窄多分散指數的聚合物。 由於在降冰片烯上添加了聚集誘導發光之分子,降冰片烯基團連接的四苯乙烯或硝化四苯乙烯聚合物可以在固態和聚集態下表現出強發射,通過紫外-可見吸收光譜和光致發光光譜進行了研究。高分子在聚集狀態下的量子產率也高於在溶液中的量子產率。所有聚合物都表現出優異的熱穩定性,其降解溫度超過 325 ℃ 就證明了這一點。在電化學性能測試中,由於四苯乙烯連續取代基的影響,聚合物的能帶隙變小。形態分析證實了聚合物中球形結構的形成。值得注意的是,這些聚合物對聚集狀態的苯胺表現出優異的靈敏度,檢測限高5×10-6 M。


This study focuses on the synthesis and characterization of norbornene-based polymers including homopolymers and copolymers. The norbornene bases polymers containing tetraphenylethene or nitrated tetraphenylethene carry out ring-opening metathesis polymerization. By utilizing third generation Grubbs’ catalysts and carefully selecting monomers, it is possible to achieve effective control over the average molecular weight of the resulting polymers. In addition, this controlled polymerization process allows for the production of polymers with a narrow polydispersity index. Due to the addition of aggregation-induced emission molecules on norbornene, norbornene group-linked tetraphenylethene or nitrated tetraphenylethene polymers, can exhibit strong emission in solid and aggregated states which was investigated by UV-vis absorption spectroscopy and photoluminescence spectroscopy. The quantum yield of polymers in aggregated state are higher than in solution. All polymers demonstrate excellent thermal stability, as evidenced by their degradation temperatures over 325 ºC. The energy band gap of the polymer becomes smaller due to the influence of the continuous substituents of TPE. The morphological analysis confirms the formation of spherical structures in the polymers. Notably, the polymers demonstrate excellent sensitivity towards aniline in their aggregated state with a remarkable detection limit of 5×10-6 M.

Table of Content 謝誌 IV Abstract V 中文摘要 VI Table of Content VII Chapter 1. Introduction and Aims 1 1.1 Ring-opening metathesis polymerization (ROMP) 1 1.1.1 Introduction of ROMP 1 1.1.2 Catalysts of ROMP 3 1.2 Introduction to polynorbornene 6 1.3 Copolymer 7 1.3.1 Block copolymers 8 1.3.2 Random copolymers 10 1.3.3 Alternating copolymers 10 1.3.4 Graft copolymers 11 1.4 Self-assembly of block copolymers 11 1.4.1 Introduction to self-assembly of block copolymers 11 1.4.2 Polymerization-induced self-assembly (PISA) 15 1.4.3 In situ nanoparticlization of conjugated polymers (INCP) 16 1.5 Aggregation-caused quenching (ACQ) 17 1.6 Aggregation-induced emission (AIE) 21 1.7 Restriction of intramolecular motions (RIM) 25 1.8 Aim of project 28 Chapter 2. Synthesis and Characterization 29 2.1 General procedures 29 2.1.1 Material 29 2.1.2 Instrumentation 29 2.2 Synthesis and characterization of monomers 30 2.2.1 Synthesis of monomers 30 2.2.2 Characterization of Monomers 33 2.3 Synthesis and characterization of polymers 37 2.3.1 Synthesis of polymers 37 2.3.2 Characterization of polymers 42 Chapter 3. Properties of Polymers 50 3.1 Optical properties 50 3.2 Thermal properties 56 3.3 Electrochemical properties 59 3.4 Morphology 63 3.5 Detection of aniline 69 3.5.1 Aniline detection in solution 69 3.5.2 Aniline detection in solid state 74 Chapter 4. Conclusion 77 Chapter 5. Experimental Section 79 5.1 Synthesis of monomers 79 5.1.1 Synthesis of 5-norbornene-exo-2,3-dicarboxylic anhydride (1) 79 5.1.2 Synthesis of 5-norbornene-exo-2,3-dicarboximide anhydride (2) 80 5.1.3 Synthesis of (2-(p-tolyl)ethene-1,1,2-triyl)tribenzene (4) 81 5.1.4 Synthesis of (2-(4-(bromomethyl)phenyl)ethene-1,1,2-triyl)tribenzene (5) 82 5.1.5 Synthesis of 4,4’,4’’-(2-(4-bromomethyl)phenyl)ethene-1,1,2-triyl)tris(nitrobezene) (6) 83 5.1.6 Synthesis of 1-(4-methylenephenyl)-1,2,2-(4-bromomethyl)phenylethene substituted 5-norbornene-exo-2,3-dicarboximide anhydride (M1) 84 5.1.7 Synthesis of 1-(4-methylenephenyl)-1,2,2-(4-nitrophenyl) phenylethene substituted 5-norbornene-exo-2,3-dicarboximide anhydride (M2) 85 5.1.8 Synthesis of 3rd generation Grubbs catalyst (G3) 86 5.2 Synthesis of polymers 86 5.2.1 Synthesis of P1 86 5.2.2 Synthesis of P2 87 5.2.3 Synthesis of P3 88 5.2.4 Synthesis of P4 88 5.2.5 Synthesis of P5 89 5.2.6 Synthesis of P6 90 References 92 Appendix i AI. 1H NMR spectra i AII. 13C NMR spectra v AIII. MS spectrum xi

[1] S. B. Lawrenson, S. Varlas, L. A. Arkinstall, R. K. O’Reilly, and J. C. Foster, Prog. Polym. Sci. 2020, 107, 101278.
[2] A. R. Hlil, J. Balogh, S. Moncho, H. L. Su, R. Tuba, E. N. Brothers, M. Al-Hashimi, and H. S. Bazzi, J. Polym. Sci. 2017, 55, 3137.
[3] I. Choinopoulos, Polymer, 2019, 11, 298.
[4] W. C. P. Tsang, K. C. Hultzsch, J. B. Alexander, P. J. Bonitatebus, R. R. Schrock, and A. H. Hoveyda, J. Am. Chem. Soc. 2003, 125, 2652.
[5] G. C. Bazan, J. H. Oskam, H. N. Cho, L. Y. Park, and R. R. Schrock, J. Am. Chem. Soc. 1991, 113, 6899.
[6] R. R. Schrock, G. C. Bazan, H. N. Cho, and V. C. Gibson, Macromolecules, 1991, 24, 4495.
[7] R. H. Grubbs, and S. T. Nguyen, J. Am. Chem. Soc. 1993, 115, 9858.
[8] R. H. Grubbs, and C. W. Bielawski, Angew. Chem. Int. Ed. 2000, 39, 2903.
[9] S. Demel, S. Riegler, K. Wewerka, W. Schoefberger, C. Slugovc, and F. Stelzer, Inorganica Chim. Acta, 2003, 345, 363.
[10] V. C. Gibson, D. A. Robson, R. G. Davies, and M. North, Macromolecules, 1999, 32, 6371.
[11] J. C. Lee, A. Song, K. A. Parker, and N. S. Sampson, J. Am. Chem. Soc. 2010, 132, 10513.
[12] D. J. Walsh, S. H. Lau, M. G. Hyatt, and D. Guironnet, J. Am. Chem. Soc. 2017, 139, 13644.
[13] J. D. Rule, and J. S. Moore, Macromolecules, 2002, 35, 7878.
[14] E. S. Finkelshtein, and M. V. Bermeshev, Journal of Nesmeyanov Institute of Organoelement Compounds of the Russian Academy of Sciences, 2018, 1, 39.
[15] M. Carratu, R. Troiano, S. Pragliola, A. C. Boccia, and F. Grisi, Eur. Polym. J. 2022, 167, 111065.
[16] A. Demonceau, L. Delaude, and A. F. Noels, Macromolecules, 1999, 32, 2091.
[17] J. D. Rule, and J. S. Moore, Macromolecules, 2002, 35, 7878.
[18] N. Hanania, N. Eghbarieh, A. Zamir, M. Nassir, T. Stein, and A. Masarwa, J. Am. Chem. Soc. 2021, 143, 6211.
[19] A. Deep. P. Samaddar, and K. H. Kim, Chem. Eng. J. 2018, 342, 71.
[20] M. Khimani, H. Patel, V. Patel, P. Parekh, and R. L. Vekariya, Original Paper, 2020, 77, 5783.
[21] Z. G. Wang, and W. Zheng, Macromolecules, 1995, 28, 7215.
[22] C. Bubeck, and S. Wu, Macromolecules, 2013, 46, 3512.
[23] M. Ouchi, and K. Nishimori, Chem. Commun. 2020, 56, 3473.
[24] W. Hu, V. B. F. Mathot, R. G. Alamo, H. Gao, and X. Chen, , Adv. Polym. Sci. 2016, 276, 1.
[25] P. J. Miller, H. Shinoda, and K. Matyjaszewski, Macromolecules, 2001, 34, 3186.
[26] A. Bhattacharya, Prog. Polym. Sci. 2004, 29, 767.
[27] W. Wang, W. Wang, H. Li, X. Lu, J. Chen, N. G. Kang, Q. Zhang, and J. Mays, Ind. Eng. Chem. Res. 2015, 54, 1292.
[28] F. S. Bates, and M. W. Masten, Macromolecules, 1996, 29, 1091.
[29] S. Y. Yang, J. K. Kim, Y. Lee, and Y. Kim, Prog. Polym. Sci. 35, 1325.
[30] R. Nistico, Beilstein J. Nanotechnol. 2018, 9, 2332.
[31] S. Y. Yang, J. K. Kim, Y. Lee, and Y. Kim, Prog. Polym. Sci. 2010, 35, 1325.
[32] F. S. Bates, Science, 1991, 251, 898.
[33] Y. Mai, and A. Eisenberg, Chem. Soc. Rev. 2012, 41, 5969.
[34] F. S. Bates, and G. H. Fredrickson, Phys. Today, 1999, 52, 32.
[35] C. I. Huang, and T. P. Lodge, Macromolecules, 1998, 31, 3556.
[36] M. W. Matsen, and M. Schick, Phys. Rev. Lett. 1994, 72, 2660.
[37] L. Wu, Q. Wang, J. Wang, and L. Wang, Prog. Polym. Sci. 2017, 29, 435.
[38] G. W. Wang, and B. Y. Shi, Acta Polym. Sin. 2022, 53, 15.
[39] G. N. Smith, S. L. Canning, and S. P. Armes, Macromolecules, 2016, 49, 1985.
[40] S. Yang, E. H. Kang, S. Y. Yu, J. Kim, and T. L. Choi, J. Polym. Sci., Part A: Polym Chem. 2017, 55, 2851.
[41] I. H. Lee, K. Y. Yoon, K. O. Kim, J. Jang, E. Lee, and T. L. Choi, J. Am. Chem. Soc. 2012, 134, 14291.
[42] S. Shin, K. Y. Yoon, Y. J. Kim, I. Kim, E. Lee, and T. L. Choi, Macromol. Rapid Commun. 2015, 36, 1069.
[43] C. Qin, Y. Li, Q. Li, C. Yan, and L. Cao, Chin. Chem. Lett. 2021, 32, 3531.
[44] Z. Zhao, S. Chen, J. W. Y. Lam, Z. Wang, P. Lu, F. Mahtab, H. H. Y. Sung, I. D. Williams, Y. Ma, H. S. Kwok, and B. Z. Tang, J. Mater. Chem. 2011, 21, 7210.
[45] Z. Zhao, C. Y. K. Chan, S. Chen, C. Deng, J. W. Y. Lam, C. K. W. Jim, Y. Hong, P. Lu, Z. Chang, X. Chen, P. Lu, H. S. Kwok, H. Qiu, and B. Z. Tang, J. Mater. Chem. A. 2012, 22, 4527.
[46] J. W. Y. Lam, B. Z. Tang, and Y. Hong, Chem. Soc. Rev. 2011, 40, 5361.
[47] Z. Xie, J. Luo, J. W. Y. Lam, L. Cheng, H. Chen, C. Qiu, X. Zhan, H. S. Kwok, Y. Liu, D. Zhu, and B. Z. Tang, Chem. Commun. 2001, 1740.
[48] Y. Hong, J. Mei, J. W. Y. Lam, A. Qin, Y. Tang, and B. Z. Tang, Adv. Mater. 2014, 26, 5429.
[49] Y. Hong, J. Mei, J. W. Y. Lam, A. Qin, Y. Tang, and B. Z. Tang, Adv. Mater. 2014, 26, 5225.
[50] J. Ma, Z. Wang, C. Li, and H. Zhang, Biosensors, 2023, 13, 159.
[51] X. Zhang, H. Liu, G. Zhuang, S. Yang, and P. Du, Nat. Commun. 2022, 13. 3543.
[52] N. Xie, N. L. C. Leung, W. Yuan, Y. Liu, Q. Wu, Q. Peng, Q. Miao, J. W. Y. Lam, and B. Z. Tang, Chem. Eur. J. 2014, 47, 15349.
[53] N. Xie, N. L. Leung, W. Yuan, Y. Liu, Q. Wu, Q. Peng, Q. Miao, J. W. Y. Lam, and B. Z. Tang, Chem. Eur. J. 2014, 20, 15353.
[54] E. R. Jimenez, and H. Rodriguez, J. Mater. Sci. 2020, 55, 1366.
[55] M. C. Kloetzel, Org. React. 1948, 4. 1.
[56] K. H. Yoon, K. O. Kim, M. Schaefer, and D. Y. Yoon, Polymer, 2012, 53, 2290.
[57] M. Banerjee, S. J. Emond, S. V. Lindeman, and R. Rathore, J. Org. Chem. 2007, 72, 8054.
[58] J. Aw, F. Widjaja, Y. Ding, J. Mu, L. Yang, and B. Xing, Chem. Commun. 2017, 53, 3330.
[59] C. Li, M. P. Aldred, G. Zhang, W. Gong, A. D. Q. Li, Y. Dai, D. Ma, and M. Q. Zhu, J. Mater. Chem. 2012, 22, 7515.
[60] V. R. Desai, A. H. Sidarai, S. M. Hunagund, M. Basanagouda, and J. S. Kadadevarmath, J. Solut. Chem. 2017, 46, 1328.
[61] D. S. Guo, B. P. Jiang, and Y. Liu, J. Org. Chem. 2011, 76, 6101.
[62] C. Vaughns, Stern-Volmer Quenching of Conjugated Polymers in School of Chemistry & Biochemistry, Georgia Instutite of Technology, United States of America 2007.

無法下載圖示 全文公開日期 2028/08/02 (校內網路)
全文公開日期 本全文未授權公開 (校外網路)
全文公開日期 2028/08/02 (國家圖書館:臺灣博碩士論文系統)
QR CODE