研究生: |
陳冠宇 Kuan-Yu Chen |
---|---|
論文名稱: |
以開環歧化聚合降冰片烯、四苯乙烯及其衍生物聚合物的合成與表徵 Synthesis and Characterization of the Polymers Containing Norbornene, Tetraphenylethene, and Tetraphenylethene Derivatives by Ring-Opening Metathesis Polymerization |
指導教授: |
游進陽
Chin-Yang Yu |
口試委員: |
施劭儒
Shao-Ju Shih 王丞浩 Cheng-Hao Wang |
學位類別: |
碩士 Master |
系所名稱: |
工程學院 - 材料科學與工程系 Department of Materials Science and Engineering |
論文出版年: | 2023 |
畢業學年度: | 111 |
語文別: | 英文 |
論文頁數: | 120 |
中文關鍵詞: | 降冰片烯 、四苯乙烯 、硝化四苯乙烯 、開環易位聚合 、聚集誘導發光 |
外文關鍵詞: | norbornene, tetraphenylethene, nitrated tetraphenylethene, ring-opening metathesis polymerization, aggregation-induced emission |
相關次數: | 點閱:574 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究重點關注降冰片烯基聚合物的合成和表徵,包括均聚物、二嵌段共聚物和無規共聚物。對含有四苯乙烯或硝化四苯乙烯的降冰片烯進行開環複分解聚合。通過利用三代催化劑並仔細選擇單體,可以有效控制所得聚合物的平均分子量。此外,這種可控聚合過程可以生產具有窄多分散指數的聚合物。 由於在降冰片烯上添加了聚集誘導發光之分子,降冰片烯基團連接的四苯乙烯或硝化四苯乙烯聚合物可以在固態和聚集態下表現出強發射,通過紫外-可見吸收光譜和光致發光光譜進行了研究。高分子在聚集狀態下的量子產率也高於在溶液中的量子產率。所有聚合物都表現出優異的熱穩定性,其降解溫度超過 325 ℃ 就證明了這一點。在電化學性能測試中,由於四苯乙烯連續取代基的影響,聚合物的能帶隙變小。形態分析證實了聚合物中球形結構的形成。值得注意的是,這些聚合物對聚集狀態的苯胺表現出優異的靈敏度,檢測限高5×10-6 M。
This study focuses on the synthesis and characterization of norbornene-based polymers including homopolymers and copolymers. The norbornene bases polymers containing tetraphenylethene or nitrated tetraphenylethene carry out ring-opening metathesis polymerization. By utilizing third generation Grubbs’ catalysts and carefully selecting monomers, it is possible to achieve effective control over the average molecular weight of the resulting polymers. In addition, this controlled polymerization process allows for the production of polymers with a narrow polydispersity index. Due to the addition of aggregation-induced emission molecules on norbornene, norbornene group-linked tetraphenylethene or nitrated tetraphenylethene polymers, can exhibit strong emission in solid and aggregated states which was investigated by UV-vis absorption spectroscopy and photoluminescence spectroscopy. The quantum yield of polymers in aggregated state are higher than in solution. All polymers demonstrate excellent thermal stability, as evidenced by their degradation temperatures over 325 ºC. The energy band gap of the polymer becomes smaller due to the influence of the continuous substituents of TPE. The morphological analysis confirms the formation of spherical structures in the polymers. Notably, the polymers demonstrate excellent sensitivity towards aniline in their aggregated state with a remarkable detection limit of 5×10-6 M.
[1] S. B. Lawrenson, S. Varlas, L. A. Arkinstall, R. K. O’Reilly, and J. C. Foster, Prog. Polym. Sci. 2020, 107, 101278.
[2] A. R. Hlil, J. Balogh, S. Moncho, H. L. Su, R. Tuba, E. N. Brothers, M. Al-Hashimi, and H. S. Bazzi, J. Polym. Sci. 2017, 55, 3137.
[3] I. Choinopoulos, Polymer, 2019, 11, 298.
[4] W. C. P. Tsang, K. C. Hultzsch, J. B. Alexander, P. J. Bonitatebus, R. R. Schrock, and A. H. Hoveyda, J. Am. Chem. Soc. 2003, 125, 2652.
[5] G. C. Bazan, J. H. Oskam, H. N. Cho, L. Y. Park, and R. R. Schrock, J. Am. Chem. Soc. 1991, 113, 6899.
[6] R. R. Schrock, G. C. Bazan, H. N. Cho, and V. C. Gibson, Macromolecules, 1991, 24, 4495.
[7] R. H. Grubbs, and S. T. Nguyen, J. Am. Chem. Soc. 1993, 115, 9858.
[8] R. H. Grubbs, and C. W. Bielawski, Angew. Chem. Int. Ed. 2000, 39, 2903.
[9] S. Demel, S. Riegler, K. Wewerka, W. Schoefberger, C. Slugovc, and F. Stelzer, Inorganica Chim. Acta, 2003, 345, 363.
[10] V. C. Gibson, D. A. Robson, R. G. Davies, and M. North, Macromolecules, 1999, 32, 6371.
[11] J. C. Lee, A. Song, K. A. Parker, and N. S. Sampson, J. Am. Chem. Soc. 2010, 132, 10513.
[12] D. J. Walsh, S. H. Lau, M. G. Hyatt, and D. Guironnet, J. Am. Chem. Soc. 2017, 139, 13644.
[13] J. D. Rule, and J. S. Moore, Macromolecules, 2002, 35, 7878.
[14] E. S. Finkelshtein, and M. V. Bermeshev, Journal of Nesmeyanov Institute of Organoelement Compounds of the Russian Academy of Sciences, 2018, 1, 39.
[15] M. Carratu, R. Troiano, S. Pragliola, A. C. Boccia, and F. Grisi, Eur. Polym. J. 2022, 167, 111065.
[16] A. Demonceau, L. Delaude, and A. F. Noels, Macromolecules, 1999, 32, 2091.
[17] J. D. Rule, and J. S. Moore, Macromolecules, 2002, 35, 7878.
[18] N. Hanania, N. Eghbarieh, A. Zamir, M. Nassir, T. Stein, and A. Masarwa, J. Am. Chem. Soc. 2021, 143, 6211.
[19] A. Deep. P. Samaddar, and K. H. Kim, Chem. Eng. J. 2018, 342, 71.
[20] M. Khimani, H. Patel, V. Patel, P. Parekh, and R. L. Vekariya, Original Paper, 2020, 77, 5783.
[21] Z. G. Wang, and W. Zheng, Macromolecules, 1995, 28, 7215.
[22] C. Bubeck, and S. Wu, Macromolecules, 2013, 46, 3512.
[23] M. Ouchi, and K. Nishimori, Chem. Commun. 2020, 56, 3473.
[24] W. Hu, V. B. F. Mathot, R. G. Alamo, H. Gao, and X. Chen, , Adv. Polym. Sci. 2016, 276, 1.
[25] P. J. Miller, H. Shinoda, and K. Matyjaszewski, Macromolecules, 2001, 34, 3186.
[26] A. Bhattacharya, Prog. Polym. Sci. 2004, 29, 767.
[27] W. Wang, W. Wang, H. Li, X. Lu, J. Chen, N. G. Kang, Q. Zhang, and J. Mays, Ind. Eng. Chem. Res. 2015, 54, 1292.
[28] F. S. Bates, and M. W. Masten, Macromolecules, 1996, 29, 1091.
[29] S. Y. Yang, J. K. Kim, Y. Lee, and Y. Kim, Prog. Polym. Sci. 35, 1325.
[30] R. Nistico, Beilstein J. Nanotechnol. 2018, 9, 2332.
[31] S. Y. Yang, J. K. Kim, Y. Lee, and Y. Kim, Prog. Polym. Sci. 2010, 35, 1325.
[32] F. S. Bates, Science, 1991, 251, 898.
[33] Y. Mai, and A. Eisenberg, Chem. Soc. Rev. 2012, 41, 5969.
[34] F. S. Bates, and G. H. Fredrickson, Phys. Today, 1999, 52, 32.
[35] C. I. Huang, and T. P. Lodge, Macromolecules, 1998, 31, 3556.
[36] M. W. Matsen, and M. Schick, Phys. Rev. Lett. 1994, 72, 2660.
[37] L. Wu, Q. Wang, J. Wang, and L. Wang, Prog. Polym. Sci. 2017, 29, 435.
[38] G. W. Wang, and B. Y. Shi, Acta Polym. Sin. 2022, 53, 15.
[39] G. N. Smith, S. L. Canning, and S. P. Armes, Macromolecules, 2016, 49, 1985.
[40] S. Yang, E. H. Kang, S. Y. Yu, J. Kim, and T. L. Choi, J. Polym. Sci., Part A: Polym Chem. 2017, 55, 2851.
[41] I. H. Lee, K. Y. Yoon, K. O. Kim, J. Jang, E. Lee, and T. L. Choi, J. Am. Chem. Soc. 2012, 134, 14291.
[42] S. Shin, K. Y. Yoon, Y. J. Kim, I. Kim, E. Lee, and T. L. Choi, Macromol. Rapid Commun. 2015, 36, 1069.
[43] C. Qin, Y. Li, Q. Li, C. Yan, and L. Cao, Chin. Chem. Lett. 2021, 32, 3531.
[44] Z. Zhao, S. Chen, J. W. Y. Lam, Z. Wang, P. Lu, F. Mahtab, H. H. Y. Sung, I. D. Williams, Y. Ma, H. S. Kwok, and B. Z. Tang, J. Mater. Chem. 2011, 21, 7210.
[45] Z. Zhao, C. Y. K. Chan, S. Chen, C. Deng, J. W. Y. Lam, C. K. W. Jim, Y. Hong, P. Lu, Z. Chang, X. Chen, P. Lu, H. S. Kwok, H. Qiu, and B. Z. Tang, J. Mater. Chem. A. 2012, 22, 4527.
[46] J. W. Y. Lam, B. Z. Tang, and Y. Hong, Chem. Soc. Rev. 2011, 40, 5361.
[47] Z. Xie, J. Luo, J. W. Y. Lam, L. Cheng, H. Chen, C. Qiu, X. Zhan, H. S. Kwok, Y. Liu, D. Zhu, and B. Z. Tang, Chem. Commun. 2001, 1740.
[48] Y. Hong, J. Mei, J. W. Y. Lam, A. Qin, Y. Tang, and B. Z. Tang, Adv. Mater. 2014, 26, 5429.
[49] Y. Hong, J. Mei, J. W. Y. Lam, A. Qin, Y. Tang, and B. Z. Tang, Adv. Mater. 2014, 26, 5225.
[50] J. Ma, Z. Wang, C. Li, and H. Zhang, Biosensors, 2023, 13, 159.
[51] X. Zhang, H. Liu, G. Zhuang, S. Yang, and P. Du, Nat. Commun. 2022, 13. 3543.
[52] N. Xie, N. L. C. Leung, W. Yuan, Y. Liu, Q. Wu, Q. Peng, Q. Miao, J. W. Y. Lam, and B. Z. Tang, Chem. Eur. J. 2014, 47, 15349.
[53] N. Xie, N. L. Leung, W. Yuan, Y. Liu, Q. Wu, Q. Peng, Q. Miao, J. W. Y. Lam, and B. Z. Tang, Chem. Eur. J. 2014, 20, 15353.
[54] E. R. Jimenez, and H. Rodriguez, J. Mater. Sci. 2020, 55, 1366.
[55] M. C. Kloetzel, Org. React. 1948, 4. 1.
[56] K. H. Yoon, K. O. Kim, M. Schaefer, and D. Y. Yoon, Polymer, 2012, 53, 2290.
[57] M. Banerjee, S. J. Emond, S. V. Lindeman, and R. Rathore, J. Org. Chem. 2007, 72, 8054.
[58] J. Aw, F. Widjaja, Y. Ding, J. Mu, L. Yang, and B. Xing, Chem. Commun. 2017, 53, 3330.
[59] C. Li, M. P. Aldred, G. Zhang, W. Gong, A. D. Q. Li, Y. Dai, D. Ma, and M. Q. Zhu, J. Mater. Chem. 2012, 22, 7515.
[60] V. R. Desai, A. H. Sidarai, S. M. Hunagund, M. Basanagouda, and J. S. Kadadevarmath, J. Solut. Chem. 2017, 46, 1328.
[61] D. S. Guo, B. P. Jiang, and Y. Liu, J. Org. Chem. 2011, 76, 6101.
[62] C. Vaughns, Stern-Volmer Quenching of Conjugated Polymers in School of Chemistry & Biochemistry, Georgia Instutite of Technology, United States of America 2007.