簡易檢索 / 詳目顯示

研究生: 周雅欣
Ya-Shin Chou
論文名稱: 矽烷偶合劑接枝之氧化石墨烯及熱脫層氧化石墨烯之合成及探討其對不飽和聚酯樹脂之聚合固化樣品微觀型態結構、体積收縮、機械性質、熱傳導及導電性質的影響
Synthesis of silane-grafted graphene oxide (sg-GO) and silane-grafted thermally reduced graphene oxide (sg-TRGO), and their effects on cured sample morphologies, volume shrinkage, mechanical properties, and thermal and electrical conductivities for unsaturated polyester resins
指導教授: 黃延吉
Yan-Jyi Huang
口試委員: 陳崇賢
Chorng-Shyan Chern
邱文英
Wen-Yen Chiu
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2020
畢業學年度: 108
語文別: 中文
論文頁數: 238
中文關鍵詞: 氧化石墨烯熱脫層氧化石墨烯矽烷接枝之氧化石墨烯矽烷接枝之熱脫層氧化石墨烯不飽和聚酯樹脂抗收縮劑聚合固化體積收縮機械性質熱傳導性質導電性質接枝效率
外文關鍵詞: graphene oxide, silane-grafted graphene oxide, thermally reduced graphene oxide, silane-grafted thermally reduced graphene oxide, low-profile additive, unsaturated polyester resin, curing, volume shrinkage, mechanical properties, grafting efficiency
相關次數: 點閱:337下載:5
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本文探討添加氧化石墨烯(GO)、矽烷接枝氧化石墨烯(sg-GO)、熱脫層氧化石墨烯(TRGO)以及矽烷接枝熱脫層氧化石墨烯(sg-TRGO)等數種特用添加劑的合成及其對苯乙烯(St)/不飽和聚酯樹脂(UP, MA-PA-PG型) /特用添加劑三成份系統於110℃性恆溫固化之微觀型態結構、體積收縮、機械性質、熱傳導及導電性之影響。
GO是將平均粒徑為75μm的天然石墨粉以改良式Hummers 法製得;熱脫層氧化石墨烯(TRGO) 則是將氧化石墨烯(GO)置於1050℃的高溫爐中、氬氣環境下30秒熱脫層而得。
矽烷接枝氧化石墨烯(sg-GO)為帶有乙烯基團的矽烷偶合劑,即甲基丙烯醯氧丙基三甲氧基矽烷(MPS),做為表面改質劑,在GO(or TRGO)/MPS/甲苯三者的重量比為1:5:994下,每次對氧化石墨烯(GO)於100℃下進行表面處理3hr,以不同懸浮天數得到不同接枝率之sg-GO,TRGO則是懸浮一天。另外,亦利用FTIR計算sg-GO、sg-TRGO接枝密度,最後吾人將合成之添加劑(GO, sg-GO, TRGO, sg-TRGO)添加到UP(MA-PA-PG, AN=30)中,亦研究其對St/UP(MA-PA-PG)/添加劑三成分系統聚合固化後之體積收縮、機械性質、熱傳導及導電性之影響。其中GO、sg-GO在混入不飽和聚酯樹脂前會使用磁石攪拌7天,TRGO、sg-TRGO則是攪拌1天。
本研究會使用FTIR鑑定官能基、藉由TGA鑑定熱穩定性、利用XPS鑑定石墨、GO、TRGO之官能基並計算碳元素與氧元素之比例、使用AFM測定GO分別在丙酮、甲苯以及去離子水溶液中,於不同懸浮天數下,GO的厚度大小,結合XRD之鑑定結果,計算出GO之層間距後推論出在不同懸浮天數下GO的脫層情況。


The effects of graphene oxide (GO), silane-grafted graphene oxide (sg-GO), thermally reduced graphene oxide (TRGO), and silane-grafted thermally reduced graphene oxide (sg-TRGO) as special additives on the cured sample morphologies, volume shrinkage characteristics, mechanical properties, thermal properties, and electrical conductivity for low-shrink unsaturated polyester resins (UP, MA-PA-PG type) cured at 110℃ were investigated.
The TRGO was produced by placing the GO in a high-temperature furnace kept in Ar environment at 1050 ℃ for 30 s, which was synthesized from natural graphite powder with average particle size of 75 μm by a modified Hummers method. The sg-GO was synthesized by using the silane coupling agent bearing C=C bonds, namely, γ-methacryloxy propyl trimethoxy silane (MPS), as a surface modifier for the surface treatment of GO at 100℃ for 3 hr with different days of GO dispersion for surface treatment between GO and MPS, and with a fixed weight ratio of GO/MPS/solvent at 1:5:994, TRGO/MPS/solvent at 1:25:974. The grafting density of MPS on the GO or TRGO has been measured by FTIR.
Finally, the effects of additives synthesized, such as, GO, sg-GO, TRGO, and sg-TRGO, on the volume shrinkage, mechanical properties, and thermal and electrical conductivities for the styrene (St) / unsaturated polyester resin (UP, MA-PA-PG, AN=30)/additive ternary systems after the cure have also been investigated. Also, we had stirred additives before combining with UP by magnetic bar for 7 days (GO, sg-GO) and 1 day(TRGO, sg-TRGO) individually.
We used FTIR to characterize functional groups, and to identify thermal properties by TGA. Then functional groups of pristine graphite(PG), GO, TRGO were characterized by XPS and the ratio of carbon and oxygen in graphite, GO, and TRGO were calculated. Also, the thickness of GO that had been disperised for different days in acetone, toluene, and DI water individually was measured by using AFM and XRD.

摘要 I Abstract II 致謝 IV 目錄 V 表目錄 XVIII 第1章 緒論 1 1.1 前言 1 1.2 研究範疇 3 第2章 文獻回顧 4 2.1 不飽和聚酯樹脂(Unsaturated Polyester, UP) 4 2.2 環氧樹脂(Epoxy Resin) 5 2.3 乙烯基酯樹脂(Vinyl Ester Resin, VER) 8 2.4 抗收縮劑(Low-profile Additives, LPA) 9 2.5 石墨烯高分子奈米複合材 10 2.6 矽烷偶合劑-甲基丙烯醯氧丙基甲氧基矽烷(MPS) 23 2.7 自由基聚合反應 26 2.8 不飽和聚酯(UP)樹脂和苯乙烯(St)之交聯共聚合反應 28 2.9 不飽和聚酯(UP)樹脂之聚合固化後微觀結構之研究 31 2.10 不飽和聚酯(UP)樹脂之抗收縮補償機制 32 2.11 抗收縮劑對不飽和聚酯(UP)樹脂之固化後體積收縮影響之研究 33 2.12 不飽和聚酯(UP)樹脂固化後的機械性質研究 34 2.13 熱傳導係數(Thermal Conductivity)之研究 36 第3章 實驗方法及設備 39 3.1 實驗架構 39 3.2 實驗材料 40 3.1.1 不飽和聚酯樹脂 40 3.1.2 特用添加劑 42 3.1.3 實驗藥品 43 3.3 實驗儀器 45 3.4 實驗流程 48 3.3.1 製備氧化石墨烯(GO) 48 3.3.2 製備矽烷偶合劑改質之氧化石墨(sg-GO) 48 3.3.3 製備熱脫層氧化石墨烯 (TRGO) 49 3.3.4 製備矽烷偶合劑改質之熱脫層氧化石墨烯 (sg-TRGO) 49 3.3.5 製備 Neat St/ UP(MA-PA-PG, AN=30) 溶液與固化試片 50 3.3.6 製備 St/UP(MA-PA-PG, AN=30)/additive之三成份溶液與固化試片 51 3.3.7 體積變化量測試-密度法 52 3.3.8 廣角度X-ray繞射儀 53 3.3.9 傅立葉紅外線光譜儀 (FTIR)之定性分析 55 3.3.10 有機改質之GO(或TRGO)利用傅立葉紅外線光譜儀之定量分析 56 3.3.11 電子能譜儀(XPS)之表面分析 59 3.3.12 原子力顯微鏡(Atomic Force Microscope, AFM) 59 3.3.13 熱重分析儀(TGA) 60 3.3.14 熱傳導係數測定 60 3.3.15 表面電阻量測 60 3.3.16 掃描式電子顯微鏡 (SEM) 61 3.3.17 穿透式電子顯微鏡 (TEM) 62 3.3.18 拉伸測試(Tensile Tester) 63 3.3.19 耐衝擊測試(Impact Test) 63 第4章 結果與討論 64 4.1 微結構分析 64 4.1.1 廣角X-ray散射儀 64 4.1.2 傅立葉紅外線光譜儀(FTIR)之定性分析 66 4.1.3 有機化改質GO之利用傅立葉紅外線光譜儀(FTIR)之定量分析 68 4.1.4 有機化改質TRGO之利用傅立葉紅外線光譜儀(FTIR)之定量分析 87 4.2 電子能譜儀(XPS)之表面分析 104 4.2.1 原始石墨材料(PG)之表面分析 104 4.2.2 氧化石墨烯(GO)之表面分析 107 4.2.3 熱脫層氧化石墨烯(TRGO)之表面分析 111 4.3 原子力顯微鏡分析(AFM) 116 4.3.1 GO於丙酮中懸浮 117 4.3.2 GO於甲苯中懸浮 119 4.3.3 GO於去離子水中懸浮 121 4.4 熱性質分析 123 4.2.1 熱重分析儀(TGA) 123 4.2.2 熱傳導係數測定 125 4.5 導電性質測定 127 4.6 微觀型態結構分析 130 4.6.1 掃描式電子顯微鏡(SEM) 130 4.6.2 穿透式電子顯微鏡(TEM) 156 4.7 體積收縮特性 174 4.6.1 St/ UP(MA-PA-PG, AN=30)/ GO三成份系統 174 4.6.2 St/ UP(MA-PA-PG, AN=30)/ sg-GO三成份系統 176 4.6.3 St/ UP(MA-PA-PG, AN=30)/ TRGO三成份系統 178 4.6.4 St/ UP(MA-PA-PG, AN=30)/ sg-TRGO三成份系統 180 4.8 機械性質分析 182 4.6.1 耐衝擊測試 182 4.6.2 拉力測試 190 第5章 結論 208 第6章 建議與未來工作 211 第7章 參考文獻 212

[1] Kim, Hyunwoo, Ahmed A. Abdala, and Christopher W. Macosko, Macromolecules 43.16 (2010): 6515-6530.
[2] Halim, Zulhelmi Alif Abdul, et al., Polymers Research Journal 10.3 (2016): 119.
[3] Ibrahim, M. S., S. M. Sapuan, and A. A. Faieza., Journal of Mechanical Engineering and Sciences 2 (2012): 133-147.
[4] A. Almagableh, P. R.Mantena, A. Alostaz, W. Liu, L. T. Drzal, eXPRESS Polym. Lett. 2009, 11, 724-732.
[5] Z. Guo, K. Lei, Y. Li, W. Liu, H. W. Ng, P. Sergy, H. Thomas, Compos. Sci. Technol. 2008, 68, 1513-1520.
[6] S. Dua, R. L. McCullough, G. R. Palmese, Polym. Compos. 1999, 20 379-391.
[7] W. Posthumus, P.C.M.M. Magusin, J.C.M. Brokken-Zijp, A.H.A. Tinnemans, R. van der Linde, J. Colloid and Interface Sci. 2004, 269, 109-116.
[8] 鍾宛倫, 碩士論文, 台灣科技大學, 2014.
[9] R.B. Burn, “Polyester Molding Compounds”, Marcel Dekker, Inc, New York, 1982.
[10] 賴耿陽, 環氧樹脂應用實務, 復漢出版社, 台灣, 1999.
[11] 陳東課, 環氧樹脂在基層板之應用, 化工技術第四卷第五期, 1996.
[12] T.D.C. Company, PCT Int.Appl.WO986/07067, 1986.
[13] R. E. Young, in “Unsaturated Polyester Technology”, Ed. P.F. Bruins, Gordon and Breach Science Publishers, 1976.
[14] F. Fekete, in “Unsaturated Polyester Technology”, Ed. P.F. Bruins, Gordon and Breach Science Publishers, 1976, P.28.
[15] S. V. Levchik, G. Camino, M. P. Luda, L. Costa, G. Muller, B. Costes, Polymer Degradation and Stability , 60, 169(1998).
[16] E. J. Bartkus, C. H Kroekel, Appl. Polym. Symp. 1970, 15, 113.
[17] V.A. Pattison, R.R. Hindersinn, W.T. Schwartz, Journal of Applied Polymer Science 18 (1974) 2763-2771.
[18] V.A. Pattison, R.R. Hindersinn, W.T. Schwartz, Journal of Applied Polymer Science 19 (1975) 3045-3050.
[19] H.G. Kia, Sheet Molding Compounds: Science and Technology, Hanser1993.
[20] Y.J. Huang, C.C. Su, Journal of Applied Polymer Science 55 (1995) 305-322.
[21] Y.-J. Huang, L.-D. Chen, Polymer 39 (1998) 7049-7059.
[22] Y.-J. Huang, J.C. Horng, Polymer 39 (1998) 3683-3695.
[23] L. Suspène, D. Fourquier, Y.-S. Yang, Polymer 32 (1991) 1593-1604.
[24] W. Li, L. Lee, K. Hsu, Polymer 41 (2000) 711-717.
[25] C.B. Bucknall, I.K. Partridge, M.J. Phillips, Polymer 32 (1991) 636-640.
[26] Y.J. Huang, T.S. Chen, J.G. Huang, F.H. Lee, Journal of Applied Polymer Science 89 (2003) 3336-3346.
[27] Y.-J. Huang, C.-M. Liang, Polymer 37 (1996) 401-412.
[28] J.P. Dong, J.H. Lee, D.H. Lai, Y.J. Huang, Journal of Applied Polymer Science 98 (2005) 264-275.
[29] H. Kim, A.A. Abdala, C.W. Macosko, Macromolecules 43 (2010) 6515-6530.
[30] Y.J. Wan, L.X. Gong, L.C. Tang, L.B. Wu, J.X. Jiang, Compos. Pt. A-Appl. Sci. Manuf. 64 (2014) 79-89.
[31] Y.J. Wan, L.C. Tang, L.X. Gong, D. Yan, Y.B. Li, L.B. Wu, J.X. Jiang, G.Q. Lai, Carbon 69 (2014) 467-480.
[32] C. Botas, P. Álvarez, C. Blanco, R. Santamaría, M. Granda, M.D. Gutiérrez, F. Rodríguez-Reinoso, R. Menéndez, Carbon 52 (2013) 476-485.
[33] H. Kim, Y. Miura, C.W. Macosko, Chemistry of Materials 22 (2010) 3441-3450.
[34] J. Zang, Y.J. Wan, L. Zhao, L.C. Tang, Macromolecular Materials and Engineering 300 (2015) 737-749.
[35] A. K. Appel, R. Thomann, R. Mülhaupt, Polymer 53 (2012) 4931-4939.
[36] X. Wang, W. Xing, L. Song, B. Yu, Y. Hu, G.H. Yeoh, Reactive and Functional Polymers 73 (2013) 854-858.
[37] Hu, Xinjun, et al. , Composites science and technology 97 (2014): 6-11.
[38] A. Chaturvedi, A. Tiwari, A. Tiwari, Adv Mater Lett 4 (2013) 656-661.
[39] O. Eksik, S.F. Bartolucci, T. Gupta, H. Fard, T. Borca-Tasciuc, N. Koratkar, Carbon 101 (2016) 239-244.
[40] E. P. Plueddemann, Silane Coupling Agents, Springer US2013.
[41] E. P. Plueddemann, H.A. Clark, Mod. Plast 40(6) (1963) 133.
[42] C. S. Brazel, S,L, Rosen, Fundamental Principle of Polymeric Materials Third Edition, New Jersey: John Wiley & Sons, Inc., 2012
[43] Y. Yang, L.J. Lee, Polymer 29 (1988) 1793-1800.
[44] 盧天智, 碩士論文. 台灣科技大學 (1989).
[45] K. Horie, I. Mita, H. Kambe, Journal of Polymer Science Part A: Polymer Chemistry 7 (1969) 2561-2573.
[46] Y. J. Huang, C. C. Su, J. Appl. Polym. Sci. 1995, 55, 305.
[47] Y. J. Huang, C.C. Su, Polym. 1994, 35, 2397.
[48] V. A. Pattison, R. R. Hindersinn, W. T. Schwartz, J. Appl. Polym. Sci. 1974, 18, 2763.
[49] V. A. Pattison, R. R. Hindersinn, W. T. Schwartz, J. Appl. Polym. Sci. 1975, 19 3045.
[50] Y. J. Huang, T. S. Chen, J. G. Huang, F. H. Lee, J. Appl. Polym. Sci. 2003, 89, 3336
[51] K. E. Atkins, in “Sheet Molding Compound :Science and Technology” Ed., H.G. Kia, Hanser Publishers, 1993, Ch4.
[52] C. B. Bucknall, I. K. Partridge, M. J. Phillips, Polym. 1991, 32, 786.
[53] T. Mitani, H. Shiraishi, K. Honda, G.E. Owen, 44th Annual Conference Composite Institute, SPI, Session 12-F, 1989.
[54] W. D. Cook, O. Delatycki, J. Polym. Sci. Polym. Phys. Ed. 1974, 12, 2111.
[55] Y. J. Huang, S. C. Lee, J. P. Dong, J. Appl. Polym. Sci. 2000, 78, 558.
[56] Y. J. Huang, T. S. Chen, J. G. Huang, F. H. Lee, J. Appl. Polym. Sci. 2003, 89, 3347.
[57] 高慶霖, 碩士論文. 台灣科技大學 (2020).
[58] W.S. Hummers Jr, R.E. Offeman, Journal of the American Chemical Society 80 (1958) 1339-1339.
[59] C. H. Schniepp, J. L. Li, M. J. McAllister, H. Sai, H. A. Margarita, D. H. Adamson, R. K. Prud’homme, R. Car, D. A. Saville, I. A. Aksay, J. Phys. Chem. B. 2006, 17, 8535.
[60] Y. Yang, J. Wang, J. Zhang, J. Liu, X. Yang, H,. Zhao, Langmuir, 2009, 25, 118.
[61] F. Beckert, C. Friedrich, R. Thomann, R. Mulhaupt, Macromol. 2012, 45, 7083.
[62] 邱冠智, 碩士論文. 台灣科技大學 (2018).
[63] 王妤榛, 碩士論文. 台灣科技大學 (2016).
[64] 廖翊成, 碩士論文. 台灣科技大學 (2017).
[65] 江義駿, 碩士論文. 台灣科技大學 (2018).
[66] S. Colonna, O. Monticelli, J. Gomez, C. Novara, G. Saracco, A. Fina, Polymer 102 (2016) 292-300.
[67] C. Hontoria-Lucas, A. Lopez-Peinado, D. Lopez-Gonzalez, M. L. Rojas-Cervantes, R. M. Martin-Ara nda, Carbon. 1995, 33, 1585-1592.
[68] G. Xue, J.L. Koenig, H. Ishida, D.D. Wheeler, Rubber chemistry and technology 64 (1991) 162-171.
[69] N. Suzuki, H. Ishida, 1996
[70] P. Innocenzi, G. Brusatin, M. Guglielmi, R. Bertani, Chemistry of Materials 11 (1999) 1672-1679.
[71] D. Lin-Vien, N.B. Colthup, W.G. Fateley, J.G. Grasselli, The Handbook of Infrared and Raman Characteristic Frequencies of Organic Molecules, Elsevier Science1991.
[72] J. Coates, Encyclopedia of analytical chemistry (2000).
[73] L.G.P. Moraes, R.S.F. Rocha, L.M. Menegazzo, E.B.d. Araújo, K. Yukimito, J.C.S. Moraes, Journal of Applied Oral Science 16 (2008) 145-149.
[74] R. Sa, Y. Yan, Z. Wei, L. Zhang, W. Wang, M. Tian, ACS Appl. Mater. Interfaces 6 (2014) 21730-21738.
[75] S. Ganguli, A.K. Roy, D.P. Anderson, Carbon 46 (2008) 806-817.
[76] R. Aradhana, S. Mohanty, S.K. Nayak, Polymer 141 (2018) 109-123.
[77] Yang, Dongxing, et al., Carbon 47.1 (2009): 145-152.
[78] Ganguly, Abhijit, et al. ,The Journal of Physical Chemistry C 115.34 (2011): 17009-17019.
[79] Dreyer, Daniel R., et al. ,Chemical society reviews 39.1 (2010): 228-240.
[80] 邱懿安,碩士論文,臺灣科技大學,2018
[81] Gustafsson, Silas E. , Review of scientific instruments 62.3 (1991): 797-804.
[82] Paredes, J. I., et al. ," Langmuir 24.19 (2008): 10560-10564.

QR CODE