簡易檢索 / 詳目顯示

研究生: 沈益葦
Yi-Wei Shen
論文名稱: 基於宣紙基材對紙微流體上的應用
Application of Raw Xuan paper substrate on paper microfluidics
指導教授: 曾修暘
Hsiu-Yang Tseng
口試委員: 田維欣
Wei-Hsin Tien
陳羽薰
Yu-Hsun Chen
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2021
畢業學年度: 109
語文別: 中文
論文頁數: 97
中文關鍵詞: 紙微流體宣紙絲網印刷膠礬水
外文關鍵詞: paper microfluidic, Xuan paper, screen printing, Alum-gule water
相關次數: 點閱:269下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

造紙術被稱為中國古代四大發明之一,是由中國東漢的時候,蔡倫改良先前的造紙技術,讓造紙成功率更高,可以使用樹皮、麻等等,這些材料經過許多步驟,就可以實現柔軟且結實的紙張,成本也更低。紙張是一般日常用品,現在有很多東西都是用紙張製作的,像是書本、畫紙、盒子或是裝食物的容器等等。其中宣紙更是在中國古代的時候最常使用的代表,最早是來自安徽省生產,現在宣紙都是用在寫書法或是畫畫的用途上。目前微流控的技術當中,紙微流控技術中,紙張有容易吸水的作用,所以紙微流控有不需要幫浦的優點,讓紙微流控的體積可以更小。我們文化中剛好有宣紙這種紙質材料,希望透過本實驗讓宣紙可以有更多的用處,可以讓全世界看到宣紙。宣紙作為我們基於微流控紙的分析設備研究的一部分。我們使用絲網印刷技術通過低成本製造工藝實現高度靈敏的反應,因為它操作簡單且價格低廉,同時具有高度可擴展性的潛力。我們在絲網印刷技術嘗試使用其他疏水劑,同時應具備容易取得,還有操作簡單、價格便宜等優點。


Papermaking is known as one of the four great inventions in ancient China. During the Eastern Han Dynasty in China, Cai Lun improved the previous papermaking technology to make the success rate of papermaking higher. Bark, hemp, etc. can be used for these materials after many steps. Achieve soft and strong paper at a lower cost. Paper is a general daily necessity, and now many things are made of paper, such as books, drawing paper, boxes or food containers. Among them, Xuan paper is the most commonly used representative in ancient China. It was first produced in Anhui Province. Now Xuan paper is used for writing calligraphy or painting. Among the current microfluidic technologies, in paper microfluidics, paper has the effect of easily absorbing water, so paper microfluidics has the advantage of not requiring a pump, making the volume of paper microfluidics smaller. We just have Xuan paper in our culture. We hope that through this experiment, Xuan paper can be used more and the world can see Xuan paper. Xuan paper as part of our research on microfluidic paper-based analytical devices. We will use screen printing technology and new hydrophobic agents to achieve a highly sensitive reaction through a low-cost manufacturing process, as it is simple to operate and inexpensive while having the potential to be highly scalable.

目錄 摘要 i Abstract ii 致謝 iii 目錄 iv 圖目錄 vi 表目錄 vi 第一章 緒論 1 1-1研究動機與目的 1 1-2文獻回顧 2 1-3 現有技術問題 3 第二章 實驗測量與方法 4 2-1實驗架設 4 2-2-1化學品和材料 6 2-2-2製造技術 10 2-2-3紙微流道做為pH試紙的製備和測量 12 2-2-4量測水在紙張流動的毛細現象 15 第三章 實驗結果與討論 17 3-1確定宣紙的吸水能力--材料選擇的初步驗證 17 3-2掃描電子顯微鏡(SEM) 18 3-3塗刷一次疏水劑對濾紙及宣紙的影響 19 3-4紙張及疏水劑對製造流道寬度的比較 20 3-5溫度及紙張厚度對製造結果的影響 21 3-6疏水劑對μPAD吸水特性的影響 22 3-7流道寬度對μPAD吸水特性的影響 23 3-8利用奈米量的樣品測定pH值 23 第四章 結論與建議 25 參考文獻 26

[1]. Martinez, A. W., Phillips, S. T., Butte, M. J., & Whitesides, G. M. Patterned paper as a platform for inexpensive, low-volume, portable bioassays. Angewandte Chemie (International ed. in English) 2007, 46(8), 1318–1320
[2]. Mabey, David, et al. "Diagnostics for the developing world." Nature Reviews Microbiology 2.3 (2004): 231-240..
[3]. Foret, F., Miniaturization and microfluidics in Liquid Chromatography. (ed. Salvatore, F) 454-455 (Foret, 2013).
[4]. Le, N.N., Phan, H.C., Dang, D.M. et al. Fabrication of Miniaturized Microfluidic Paper-Based Analytical Devices for Sandwich Enzyme-Linked Immunosorbent Assays using INKJET Printing. Appl Biochem Microbiol 2021. 57, 257–261
[5]. Zhang, X., Zhi, H., Zhu, M., Wang, F., Meng, Hu., & Feng, L. Electrochemical/visual dual-readout aptasensor for Ochratoxin A detection integrated into a miniaturized paper-based analytical device. Biosensors and Bioelectronics 2021, 180, 113146.
[6]. Tyas, A. A., Raeni, S. F., Sakti, S. P., & Sabarudin, A. Recent Advances of Hepatitis B Detection towards Paper-Based Analytical Devices. The Scientific Journal 2021.
[7]. Ilacas, G. & Gomez, F. A. Microfluidic Paper-based Analytical Devices (μPADs): Miniaturization and Enzyme Storage Studies. Anal Sci. 2019. 35(4), 379-384.
[8]. Shishov, A., Trufanov, I., Nechaeva, D., & Bulatov, A. A reversed-phase air-assisted dispersive liquid-liquid microextraction coupled with colorimetric paper-based analytical device for the determination of glycerol, calcium and magnesium in biodiesel samples. Microchemical Journal. 2019. 150, 104134.
[9]. Martinez, A. W., Phillips, S. T., Wiley, B. J., Gupta, M., & Whitesides, G. M. FLASH: A rapid method for prototyping paper-based microfluidic devices. Lab on a chip 2008, 8(12), 2146–2150.
[10]. Chitnis, G., Ding, Z., Chang, C. L., Savran, C. A., & Ziaie, B. Laser-treated hydrophobic paper: an inexpensive microfluidic platform. Lab on a Chip 2008, 11(6), 1161-1165.
[11]. Amin. R. et al. Pushing the limits of spatial assay resolution for paper-based microfluidics using low-cost and high-throughput pen plotter approach. Micromachines 2020, 11(6), 611.
[12]. Nie, J. et al. Low-cost fabrication of paper-based microfluidic devices by one-step plotting. Analytical chemistry 2012, 84(15), 6331–6335.
[13]. Li, X., Tian, J., Nguyen, T., & Shen, W. Paper-based microfluidic devices by plasma treatment Analytical chemistry 2008, 80(23), 9131–9134.
[14]. Curto, V. F. et al. Fast prototyping of paper-based microfluidic devices by contact stamping using indelible ink. RSC Adv. 2013, 3, 18811-18816.
[15]. Dixon, C., Lamanna, J., & Wheeler, A. R. Printed microfluidics. Adv. Funct. Mater. 2017, 27 (11).
[16]. Maejima, K., Tomikawa, S., Suzuki, K., & Citterio, D. Inkjet printing an integrated and green chemical approach to microfluidic paper-based analytical devices RSC Advances. 2013, 3, 9258-9263.
[17]. Abe, K., Suzuki, K., & Citterio, D. Inkjet-printed microfluidic multianalyte chemical sensing paper. Analytical chemistry 2008, 80(18), 6928–6934.
[18]. Songjoaren, T., Dungchai, W., Chailapakul, O., & Laiwattanapaisal, W. Novel, simple and low-cost alternative method for fabrication of paper-based microfluidics by wax dipping Talanta 2011, 85(5), 2587-93.
[19]. Strong, B., Schultz, S., Martinez, A., & Martinez, N. Fabrication of Miniaturized Paper-Based Microfluidic Devices (microPADs). Sci Rep. 2019, 9, 7.
[20]. Olkkonen, J., Lehtinen, K., & Erho, T. Flexographically printed fluidic structures in paper. Analytical chemistry 2010, 82(24), 10246–10250.
[21]. Dungchai, W., Chailapakul, O., & Henry, C. S. A low-cost, simple, and rapid fabrication method for paper-based microfluidics using wax screen-printing The Analyst 2010, 136(1), 77–82
[22]. Wang, S. et al. Paper-based chemiluminescence ELISA: lab-on-paper based on chitosan modified paper device and wax-screen-printing. Biosens Bioelectronics 2012, 31(1), 212–218.
[23]. Ma, S., Tang, Y., Liu, J., & Wu, J. Visible paper chip immunoassay for rapid determination of bacteria in water distribution system. Talanta 2014, 120, 135–140.
[24]. Namwong, P., Jarujamrus, P., Amatatongchai, M., & Chairam, S. Fabricating simple wax screen-printing paper-based analytical devices to demonstrate the concept of limiting reagent in acid–base reactions. Journal of Chemical Education 2018, 95(2), 305-309.
[25]. Jarujamrus, P. et al. Screen-printed microfluidic paper-based analytical device (μPAD) as a barcode sensor for magnesium detection using rubber latex waste as a novel hydrophobic reagent. Anal Chim Acta 2019, 1082, 66–77.
[26]. Mohammadi, M. et al. An instrument-free, screen-printed paper microfluidic device that enables bio and chemical sensing. Analyst 2015, 140, 6493-6499.
[27]. Juang, Y. J., Li, W. S., & Chen, P. S. Fabrication of microfluidic paper-based analytical devices by filtration-assisted screen-printing. J. Taiwan. Inst.Chem. Eng 2017. 80, 71-75.
[28]. Sun, J. Y., Cheng, C. M., & Liao, Y. C. Screen printed paper-based diagnostic devices with polymeric inks. Anal Sci. 2015, 31(3), 145–151.
[29]. Sameenoi, Y., Nongkai, P., Nouanthavong, S., Henry, C. S., Nacapricha, D. One-step polymer screen-printing for microfluidic paper-based analytical device (μPAD) fabrication. Analyst 2014, 139, 6580-6588.
[30]. Sigma-Aldrich 2021, Whatman® qualitative filter paper, Grade 4. Accessed on 27 April 2021. Retrieved from
[31]. Sigma-Aldrich 2021, Whatman® qualitative filter paper, Grade 1. Accessed on 27 April 2021. Retrieved from Tsai, F. W., & van der Reyden, D. Analysis of modern Chinese paper and treatment of a Chinese woodblock print Pap Conserv. 1997, 21(1), 48-62.
[32]. Luo, Y., Cigić, I.K., Wei, Q., & Strlic, M. Characterisation and durability of contemporary unsized Xuan paper. Cellulose 2021. 28, 1011–1023.
[33]. Zhou, Y. et al. Redefining Chinese calligraphy rice paper: an economical and cytocompatible substrate for cell biological assays. Rsc Adv 2017. 7, 41017-41023.
[34]. Shoon, D. D. Nail enhancement product chemistry in Milady’s Nail Structure & Product Chemistry. (ed. Downs, A) 55-56 (Shoon, 1996).
[35]. Foster, C. W., Metters, J. P., & Banks, C. E. Ultra flexible paper based electrochemical sensors: effect of mechanical contortion upon electrochemical performance Electroanalysis 2013, 25(10), 2275.
[36]. Satarpai, T., & Siripinyanond, A. Alternative Patterning Methods for Paper-based Analytical Devices Using Nail Polish as a Hydrophobic Reagent. Anal Sci. 2018, 34(5), 605–612.
[37]. Bala, R., & Braun, K. M. (2003). Color-to-grayscale conversion to maintain discriminability. Color Imaging IX: Processing, Hardcopy, and Applications, 5293(1), 196. https://doi.org/10.1117/12.532192
[38]. Bachmannm, J., Wooche, S. K., Goebel, M. O., Kirkham, M. B., Horton R., Extended methodology for determining wetting properties of porous media. Water Resources Research. 2003, 39(12) 1353-1364.

無法下載圖示 全文公開日期 2031/10/21 (校內網路)
全文公開日期 本全文未授權公開 (校外網路)
全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
QR CODE