簡易檢索 / 詳目顯示

研究生: 戴廷裕
Ting-Yu Dai
論文名稱: 高強度鋼筋混凝土梁在不同箍筋間距與剪力需求下之往復載重行為
Cyclic Behavior of High-Strength Reinforced Concrete Flexural Members with Different Hoop Spacing and Shear Demand
指導教授: 鄭敏元
Min-Yuan Cheng
口試委員: 黃世建
none
李宏仁
none
歐昱辰
none
學位類別: 碩士
Master
系所名稱: 工程學院 - 營建工程系
Department of Civil and Construction Engineering
論文出版年: 2016
畢業學年度: 104
語文別: 中文
論文頁數: 144
中文關鍵詞: 高強度鋼筋混凝土梁箍筋間距耐震設計往復載重撓剪破壞
外文關鍵詞: high-strength reinforced concrete flexural membe, hoop spacing, seismic design, cyclic loading, flexural-shear failure
相關次數: 點閱:362下載:28
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本研究旨在探討高強度鋼筋混凝土梁於不同剪應力需求下使用不同剪力鋼筋間距(以s/d_b描述)之往復載重行為。本論文共測試五組鋼筋混凝土梁試體,其中一組試體使用混凝土設計強度35MPa,其餘四組使用混凝土設計強度70MPa,為了達到研究目的,本論文在分析實驗數據時同時引用2014年黃浲誠所測試之試體BST(本文以試體HC_12#10_H4d_b命名以求一致性)以進行比較,所有試體斷面積均皆為700×400mm,試體皆以單曲率往復載重進行測試,研究之試體所使用之USD685及USD785高強度鋼筋皆來自日本TTK製造。實驗結果顯示所有試體皆呈現撓剪主控的破壞模式,即試體在剪力破壞前均達到設計撓曲強度,且不論箍筋間距為何,所有試體主筋在試體破壞前均觀察到嚴重挫曲的情形。根據實驗結果發現降低試體箍筋間距,未必會提升試體的變形能力,取決於試體變形量是否集中在某個微小區間內。對於剪力需求小於0.30√(f_c^' "(MPa)" ) 之試體而言,箍筋間距s/d_b= 6下試體可維持設計強度達層間位移角至少4.50%;而對於高剪力需求試體而言(≥"0.45" √(f_c^' "(MPa)" )) ,箍筋間距s/d_b= 4可維持試體設計強度達層間位移角3.50%,六組試體之箍筋可使用剪力設計容量範圍介於400~850MPa。另外從試體能量消散能力及勁度衰減的趨勢結果,可以發現縮短箍筋間距由s/d_b= 6至s/d_b= 4,對試體能量消散能力及勁度衰減趨勢提升效果並不顯著。


Cyclic behavior of high-strength reinforced concrete (RC) beam members with different shear demand levels and spacings of transverse reinforcement (expressed in terms of s/d_b) is investigated in this study. A total of five high-strength RC beam specimens were tested. All of the test specimens have specified concrete strength of 70 MPa except one, which only has a specified concrete strength of 35 MPa. For comparison purposes, one of the test specimens from a previous study (黃浲誠, 2014) is included in the analysis part of this report. All test specimens have identical cross-section dimensions of 700×400mm and are subjected to single-curvature cyclic displacement reversals. All high-strength reinforcing bars including SD685 and SD785 steels used in this research were manufactured and sponsored by the Tokyo Tekko Company (TTK) from Japan. Test results show that all six specimens failed in flexure-shear failure mode after achieving their corresponding flexure strengths. Regardless of the transverse reinforcement spacing, buckling of longitudinal reinforcement was observed in all test specimens before failure. Test results also show that the reduction of transverse reinforcement spacing does not necessarily enhance the deformation capacity, which is highly affected by the occurrence of localized deformation. Based on the test results of specimens with low shear demand levels (≤0.30√(f_c^' "(MPa)" )), the peak shear strength can be sustained up to approximately 4.50% drift with an s⁄d_b ratio not greater than 6. For specimens with high shear demand levels (≥0.45√(f_c^' "(MPa)" )), the peak shear strength can be sustained up to approximately 3.50% drift with an s⁄d_b ratio not greater than 4. The usable design shear stresses of the transverse reinforcement are within the range of 400 to 850 MPa. Analytical results also show that reduction of transverse reinforcement spacing from s/d_b= 6 to s/d_b= 4 has no significant impact on enhancing the relative energy dissipation ability and stiffness deterioration of the specimens.

致謝I 摘要IV AbstractV 目錄VI 圖目錄VIII 表目錄XI 第一章 緒論1 1.1 研究背景1 1.2 研究動機4 1.3 研究目的4 1.4 論文內容編排5 第二章 文獻回顧6 2.1 高強度混凝土6 2.2 高強度鋼筋11 2.3 s/db值回顧14 第三章 試體規劃15 3.1 試體設計15 3.2 試驗配置22 3.3 試驗量測系統配置24 3.4 測試步驟32 3.5 試體設計公式34 第四章 試驗結果分析35 4.1材料試驗結果35 4.1.1混凝土強度試驗35 4.1.2鋼筋拉伸試驗39 4.2試體測試結果42 4.3 裂縫寬度比較70 4.4 載重-位移曲線分析72 4.4.1 試體強度75 4.4.2 試體變形能力78 4.4.3 試體能量消散能力80 4.4.4試體勁度衰減84 4.4.5 ACI 374.1規範檢核86 4.5 試體外部變形分析87 4.6 應變計量測92 第五章 結論135 參考文獻137 符號說明142

1. ACI Committee 318, 2014, “Building Code Requirements for Structural Concrete and Commentary (ACI 318-14),” American Concrete Institute, Farmington Hills, Michigan, 519 pp.

2. ACI Committee 374, 2005, “Acceptance Criteria for Moment Frames Based on Structure Testing and Commentary (ACI 374.1- 05) ,”American Concrete Institute, Farmington Hills, MI, pp.1-9.

3. ACI Innovation Task Group 4, 2007, “Report on Structural Design and Detailing for High-Strength Concrete in Moderate to High Seismic Applications (ITG-4.3R-07),” American Concrete Institute, Farmington Hills, MI, 62 pp.

4. Aoyama, H., 2001, “Design of Modern High-rise Reinforced Concrete Structures,” Series of Innovation in Structures and Construction, Imperial College Press, London, V. 3, 460 pp.

5. ASTM A706/A706M, 2009, “Standard Specification for Low-Alloy Steel Deformed and Plain Bars for Concrete Reinforcement.” ASTM International, West Conshohocken, PA, 6 pp.

6. ASTM A1035/A1035M, 2011, “Standard Specification for Deformed and Plain, Low-Carbon, Chromium, Steel Bars for Concrete Reinforcement,” ASTM International, West Conshohocken, PA, 5 pp.

7.ASTM A370, 2012, “Standard Test Methods and Definitions for Mechanical Testing of Steel Products,” ASTM International, West Conshohocken, PA, 48 pp.

8. AS/NZS 4671, 2001, “Steel Reinforcing Materials”, Standards Association of New Zealand.

9. Azizinamini, A.; Kuska, S. S. B.; Brungardt, P.; and Hatfield, E., 1994, “Seismic Behavior of Square High-Strength Concrete Columns,” ACI Structural Journal, V. 91, No. 3, May-June, pp. 336-345.

10. Bae, S. and Bayrak, O., 2003, “Stress Block Parameters for High-Strength Concrete Members,” ACI Structural Journal, V. 100, No.5, September-October, pp. 626-636.

11.Brown, R. H. and Jirsa, J. O., 1971, “Reinforced Concrete Beams under Load Reversals,” ACI Structural Journal, Proc. V. 68, No. 5, May, pp. 380-390.

12. Canadian Standards Association, 2004, “Design of Concrete Structures,” Standard CSA-A23.3-04, Toronto, Canada, 232 pp.

13. Cheng, M.-Y. and Giduquio, M. B., 2014, “Cyclic Behavior of Reinforced Concrete Flexural Members Using High-Strength Flexural Reinforcement,” ACI Structural Journal, V.111, No.4, July-August, pp. 893-902.

15. European Committee for Standardization, 2004, “Eurocode2: Design of concrete structures─Part1-1:General rules and rules for buildings,” CEN, Brussels, 225 pp.

16. Ibrahim, H. H. H. and MacGregor, J. G., 1997, “Modification of the ACI Rectangular Stress Block for High-Strength Concrete,” ACI Structural Journal, V. 94, No. 1, January-February, pp. 40-48.

17. JSCE Concrete Committee, 2010, “Standard Specifications for Concrete Structures-2007,” Japan Society of Civil Engineers, Tokyo, Japan, 469 pp.

18. Karr, P. H.; Hanson, N. W.; and Capell, H. T., 1978, “Stress-Strain Characteristics of High Strength Concrete,”Douglas McHenry International Symposium on Concrete and Concrete Structures, SP-55, American Concrete Institute, Farmington Hills, MI, pp. 161-185.
19. Lee, J.-Y.; Choi, I.-J.; and Kim, S.-W., 2011, “Shear Behavior of Reinforced Concrete Beams with High-Strength Stirrups,” ACI Structural Journal, V.108, No. 5, September-October, pp. 620-629.

20. Leslie, K. E.; Rajagopalan, K. S.; and Everard, N. J., 1976, “Flexural Behavior of High-Strength Concrete Beams,” ACI Journal Proceedings, V. 73, No. 9, September, pp. 517-521.

21. Mattock, A. H.; Kriz, L. B.; and Hognestad, E., 1961, “Rectangular Concrete Stress Distribution in Ultimate Strength Design,” Journal of the American Concrete Institute, V. 57, No. 8, February, pp. 875-929.

22. Mertol, H. C.; Rizkalla, S.; Zia, P.; and Mirmiran, A., 2008, “Charateristics of Compressive Stress Distribution in High-Strength Concrete,” ACI Structural Journal, V. 105, No. 5, September-October, pp. 626-633.

23. Nedderman, H., 1973, “Flexural Stress Distribution in Very High Strength Concrete,” M.S. thesis, Department of Civil Engineering, University of Texas, Austin, Texas, 182 pp.

24. NZS 3101, 2006, “Concrete Structures Standard: Part 1-The Design of Concrete Structures,” Standards Council, Wellington, New Zealand, 306 pp.

25. NIST GCR 14-917-30, 2014, “Use of High-Strength Reinforcement in Earthquake-Resistant Concrete Structures,” NEHRP Consultant Joint Venture, California, 231 pp.

26. Ozbakkaloglu, T. and Saatcioglu, M., 2004, “Rectangular Stress Block for High-Strength Concrete,” ACI Structural Journal, V. 101, No. 4, July-August, pp. 475-483.

27. Panagiotou, M.; Visnjic, T; Antonellis, G.; Galanis, P.; and Moehle J. P., 2013, “Effect of Hoop Reinforcement Spacing on the Cyclic Response of Large Reinforced Concrete Special Moment Frame Beams,” Report 2013/16, Pacific Earthquake Engineering Research Center, Berkeley, CA, 92 pp.

28. Paulay, T. and Priestley, M. J. N., 1992, “Seismic Design of Reinforced Concrete and Masonry Buildings,” John Wiley & Sons, Inc., New York, 768 pp.

29. Risser, B. and Hoffman, M., 2011, “Reinforcing Congestion”, Concrete Construction, January, V. 56, No. 1, p16.

30. Schnell R. E. and Bergmann M. P., 2008, “Improving Tomorrow’s Infrastructure: Extending the Life of Concrete Structures With Solid Stainless Steel Reinforcing Bar,” Proceedings of the 2007 New York City Bridge Engineering Conference, Carpenter Technology Corporation, April, 12 pp.

31. Slater, W. A. and Lyse, I., 1930, “Compressive Strength of Concrete in Flexure,” Proceedings, American Concrete Institute, June, V. 26, pp. 831-874.

32. Sumpter, M. S.; Rizkalla, S. H.; and Zia, P., 2009, “Behavior of High-Performance Steel as Shear Reinforcement for Concrete Beams,” ACI Structural Journal, V. 106, No.2, March-April, pp. 171-177.

33. Tavallali, H.; Lepage, A.; Rautenberg, J. M. and Pujol, S., 2014, “Concrete Beams Reinforced with High-Strength Steel Subjected to Displacement Reversals,” ACI Structural Journal, V. 111, No. 5, September-October, pp. 1037-1048.

34. Whitney, C. S., 1937, “Design of Reinforced Concrete Member under Flexure of Combined Flexural and Direct Compression,” Proceedings, American Concrete Institute, Vol. 33, No. 3, March, pp. 483-498.

35. CNS 560 A2006,2006 年,鋼筋混凝土用鋼筋規範,經濟部國家標準檢驗局。

36. 王淑真,李宏仁,黃世建,2009年,新高強度鋼筋機械性質與續接錨定,混凝土工程研討會,台灣混凝土學會,共10頁。

37. 黃浲誠,2014年,高強度鋼筋混凝土撓曲桿件於往覆水平載重之行為,國立台灣科技大學,碩士論文,共84頁。

QR CODE