簡易檢索 / 詳目顯示

研究生: 廖柏州
Po-Chou Liao
論文名稱: 鋼筋與混凝土在反覆載重下之直線拉力握裹行為研究
Study on Bond Behaviors of Reinforced Concrete under Cyclic Loading
指導教授: 邱建國
Chien-Kuo Chiu
口試委員: 廖文義
Wen-i Liao
林克強
Ker-Chun Lin
許丁友
Ting-Yu Hsu
學位類別: 碩士
Master
系所名稱: 工程學院 - 營建工程系
Department of Civil and Construction Engineering
論文出版年: 2017
畢業學年度: 105
語文別: 中文
論文頁數: 172
中文關鍵詞: 握裹反覆載重梁柱接頭錨定長度
外文關鍵詞: Bond, Cyclic Loading, Interior Beam-Column Joint, Anchorage length
相關次數: 點閱:294下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在RC結構物中,為能使力量有效的傳遞,鋼筋與混凝土間須有足夠的握裹。然而,影響握裹性能的好壞原因眾多,包含鋼筋表面幾何性質(Rr值,節高節距之比值)、混凝土強度、保護層厚度、箍筋、軸壓力等,均會影響其行為。雖然上述影響因子均有相關研究報告,但大多以單向載重試驗為主,對於握裹在反覆載重下行為較少提及,而處於地震帶之建物經常受到地震帶來之反覆作用影響,勢必對握裹造成損傷,由其對於內部梁柱接頭影響甚大。
    有鑒於此,為了瞭解在反覆作用下之基本握裹行為,本研究共進行十二組鋼筋與混凝土於反覆拉拔下握裹測試之試體,並額外製做兩組以單向拉拔之試體,以比較反覆拉拔兩者之差異。本次採用主筋為SD550,混凝土設計抗壓強度均採用35MPa,主要探討變數為埋置長度(20、24、26、28、32、36倍鋼筋直徑)、主筋號數(#8、#10)與軸壓應力比(0.05、0.2),以了解各項因子對握裹行為表現之影響。本次試驗結果顯示,軸壓應力比自0.05提升至0.2能使埋置長度縮短約10%,並由有限試驗數據經由內插方式求得軸壓力影響方程式。觀察握裹應力對混凝土強度正歸化與滑移量關係圖發現當滑移量超過0.32mm時,握裹將發生較快速的破壞,且測試多組不同埋置長度試體發現,當埋置長度不足時,將發揮較大握裹應力。並將握裹應力容量定義於極限滑移量為1mm時,於軸壓應力比為0.2情況下為1.25倍混凝土抗壓強度0.5次方。因此在僅受拉力情況下,若須確保主筋能強度發揮1.25fy,則埋置長度至少需要24倍主筋直徑。


    In the RC structure, the bond performance will be influenced by lots of factors, including geometric of reinforcement (Relative Rib Area, Rr), concrete compression strength, clear cover, transverse reinforcement, axial force. Nowadays, the bonding models are commonly obtained by monotonic loading test. However, in the moment resisting frames, the interior beam-column joint may be critical regions in seismic design.
    To understand the basic bond behaviors under cyclic loading, this study carried out fourteen bonding test specimens which use SD550 rebars and concrete design compressive strength is 35MPa, including twelve specimens conducting cyclic tensile loading and two specimens conducting monotonic tensile loading to compare with the result of cyclic tensile loading. This study also explores different anchorage length, size of reinforcement, and axial force to compare the bond performance. The test results show that the anchorage length decreases about 10% when axial force from 0.05Agf'c increase to 0.2Agf'c. From the relation between the slippage and the bond stress correlated with the concrete compressive strength observes a rapid bond deterioration when the slippage over 0.32mm. Additionally, it will develop larger bond stress if the anchorage length is not long enough. In this study, the available bond stress is 1.25 times the square root of f'c which is defined as the slippage at 1mm under 0.2Agf'c. Hence, to make sure longitudinal reinforcements can develop 1.25fy under cyclic tensile loading, the anchorage length is 24 times diameter of longitudinal reinforcement at least.

    表索引 圖索引 第一章 緒論 1.1 前言 1.2 研究動機 1.3 研究目的 第二章 文獻回顧 2.1 內部梁柱接頭受力模型與基本最小柱深計算式 2.2 各國規範最小柱深計算式 2.2.1 ACI 318-14規範 2.2.2 ACI 352R-02委員會 2.2.3 AIJ-2016規範 2.2.4 NZS 3101-2006規範 2.2.5 Eurocode 8-2004規範 2.3相關研究對最小柱深之建議 2.3.1 Kitayama, Otani 與 Aoyama (日本) 2.3.2 Hyeon-Jong Hwang (南韓) 2.3.3 NIST-GCR (美國) 2.3.4 Brooke 與Ingham (紐西蘭) 2.4各國規範最小柱深計算式數值比較 2.4.1 握裹應力容量 2.4.2 柱軸壓力比影響係數 2.4.3 梁主筋應力發展程度係數 2.4.4 最小柱深 第三章 試驗規劃 3.1 試驗參數 3.2 試驗方式 3.2.1 試驗裝置 3.2.2 試驗方式 3.2.3 試驗量測 3.3實測材料強度 3.3.1 混凝土抗壓強度 3.3.2 鋼筋機械性質 第四章 試驗結果 4.1 各組試體試驗過程 第五章 試驗結果分析與討論 5.1應力比-滑移曲線與包絡線 5.2不同Rr值之比較 5.2.1單向載重 5.2.2反覆載重 5.3單向載重與反覆載重之比較 5.4軸壓力之影響 5.5握裹應力容量與軸壓力影響係數之建議 5.6應變計讀值之探討 第六章 結論與建議 6.1結論 6.2建議 附錄A A.1現行規範對鋼筋伸長率與量測之規定 A.1.1 中華民國國家標準CNS規定之標點距離與伸長率 A.1.2 美國ASTM規定之標點距離與伸長率 A.2美國ATC與GCR報告對伸長率之建議 A.3尖峰伸長率之量測方法探討 A.3.1 第一批鋼筋拉伸試驗 A.3.2 第二批鋼筋拉伸試驗

    [1]ACI Committee 318, “Building Code Requirements for Structural Concrete and Commentary.”, American Concrete Institute, Farmington Hills, 2014.
    [2]內政部營建署,「混凝土結構設計規範」,臺灣,民國100年6月。
    [3]Zhu, S., and Jirsa, J. O., “A study of Bond Deterioration in Reinforced Concrete Beam-Column Joints.”, The University of Texas at Austin, July, 1983.
    [4]Leon, R. T., “Interior Joints with Variable Anchorage Lengths.”, ASCE, Journal of Structure Engineering, Vol. 115, No.9, September, 1989, pp. 2261-2275.
    [5]ACI-ASCE Committee 352, “Recommendations for Design of Beam-Column Joints in Monolithic Reinforced Concrete Structures.”, ACI Journal, Proceedings, 2002.
    [6]Architectural Institute of Japan (AIJ). (2016). “AIJ Standard for Lateral Load-carrying Capacity Calculation of reinforced Concrete Structures, Tokyo (in Japanese).”
    [7]藤井栄, 村上秀夫,山田稔名, 森田司郎, “高強度鉄筋コンクリート柱梁接合部における梁通し筋の付着性状”, コンクリート工学年次論文報告集, 1991.
    [8]Architectural Institute of Japan (AIJ). (1999). “Design guidelines for earthquake resistant RC buildings based on inelastic displacement concept, Tokyo (in Japanese).”
    [9]Architectural Institute of Japan (AIJ). (2010). “AIJ Standard for Structural Calculation of Reinforced Concrete Structures (in Japanese).”
    [10]NZS 3101:1995, “The Design of Concrete Structures,” Standards New Zealand, Wellington, New Zealand,
    [11]Paulay, T., and Priestley, M. J. N., Seismic Design of Reinforced Concrete and Masonry Buildings, John Wiley & Sons, New York, 1992, 744 pp.
    [12]European Committee for Standardization (CEN). (2004). “Design of structures for earthquake resistance, part 1: General rules, seismic actions and rules for buildings.” Eurocode 8, EN 1992-1, BSI British Standards, London.
    [13]European Committee for Standardization (CEN). (2004). “Design of concrete structures, part 1-1: General rules, and rules for buildings.” Eurocode 2, EN 1998-1, BSI British Standards, London, pp. 120-121
    [14]J. O. Jirsa, ed., “Design of Beam-Column Joints for Seismic Resistance.”, SP-123, American Concrete Institute, Farmington Hills, Michigan, 1991, 518pp.
    [15]Hyeon-Jong Hwang, Tae-Sung Eom and Hong-Gun Park, “Bond-Slip Relationship of Beam Flexural Bars in Interior Beam-Column Joints.”, ACI Structural Journal, Vol. 112, No.6, November-December, 2015. 79 pp.
    [16]ACI Committee 374.1-05,’’Acceptance Criteria for Moment Frames Based on Structural Testing and Commentary.’’, 2005.
    [17]National Institute of Standard and Technology (NIST), “Use of High-Strength Reinforcement in Earthquake-Resistant Concrete Structures, March, 2014, 4-10~4-17 pp.
    [18]Nicholas J. Brooke and Jason M. Ingham, “Seismic Design Criteria for Reinforcement Anchorages at Interior RC Beam-Column Joints.”, ASCE, Journal of Structural Engineering, Vol. 139, Issue 11, November, 2013, pp. 1985-1905.

    QR CODE