簡易檢索 / 詳目顯示

研究生: 林裕培
Yu-pei Lin
論文名稱: IEEE 802.15.4低速率無線個人區域網路下動態保證時槽配置機制之研究
Study on Dynamic GTS Allocation Scheme (DGAS) in IEEE 802.15.4 LR-WPAN
指導教授: 黎碧煌
Bih-hwang Lee
口試委員: 吳傳嘉
Chwan-chia Wu
陳添智
Tien-chi Chen
黃依賢
I-shyan Hwang
陳明輝
none
學位類別: 碩士
Master
系所名稱: 電資學院 - 電機工程系
Department of Electrical Engineering
論文出版年: 2010
畢業學年度: 98
語文別: 中文
論文頁數: 53
中文關鍵詞: IEEE 802.15.4 低速率無線個人區域網路無線感測網路保證時槽
外文關鍵詞: IEEE 802.15.4 LR-WPAN, Wireless Sensor Network, Guaranteed Time Slot
相關次數: 點閱:253下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • IEEE 802.15.4低速率無線個人區域網路是一套近距離的通訊標準,其特點有低成本、低功耗、彈性的傳輸率,因此非常適合無線感測網路(wireless sensor network ; WSN)之應用。為了滿足特定頻寬需求或時間急迫性的應用,IEEE 802.15.4標準可適時的選用免競爭週期(contention-free period ; CFP)來傳送資料,藉此以降低負載提高時,傳輸所造成的碰撞機率,進而提升無線感測網路的有效產能。
    IEEE 802.15.4標準定義的免競爭週期中,每個保證時槽(guaranteed time slots ; GTSs)由一個以上的時槽所組成,並且只能提供單一裝置使用,由於是以單位時槽為配置單位,因此會發生配置的頻寬大於所需的頻寬之情形,進而造成頻寬浪費的問題,尤其是隨著超碼框級數(superframe order ; SO)的上升,保證時槽中的單位時槽也隨之變大,此一問題將更加明顯。
    為了解決上述的問題,本論文提出了動態保證時槽配置機制(dynamic GTS allocation scheme ; DGAS),透過本機制可有效的提升免競爭週期的使用率,藉此降低頻寬浪費。由模擬結果可以發現,本論文所提出的機制,無論是在免競爭週期的使用率、有效產能、能量消耗均比IEEE 802.15.4標準及先前被提出的機制有較好的表現。


    IEEE 802.15.4 low-rate wireless personal area networks is a set of near field communication standard, it is characteristic of low cost, low power, and flexible transfer rate, therefore it can apply in WSN. In order to meet the need of fixed bandwidth and time sensitive application, IEEE 802.15.4 standard can optionally use contention-free period (CFP) to transmit data. To reduce the probability of collision from transmission and promote wireless sensor network goodput when the load increase.
    By IEEE 802.15.4 standard definition, in contention-free period, each guaranteed time slots (GTSs) is composed by more than one time slots, and provide use of single device, because CFP allocate guaranteed time slots based on unit time slot, so bandwidth allocation greater than bandwidth required, and then CFP shall have the waste problem, when the value of superframe order (SO) increases , to the unit slot larger, so waste problem will become worse.
    In order to solve the above-mentioned problems, we propose dynamic GTS allocation scheme (DGAS). by this mechanism can promote utilization of CFP, and reduce the bandwidth waste. We compare our proposed scheme, IEEE 802.15.4 standard, and some previous schemes by simulations, the simulation results of CFP utilization, goodput and power consumption shows the improvement of our scheme.

    第一章 緒論 1 1.1 簡介 1 1.2 研究動機與目的 2 1.3 章節概要 3 第二章 IEEE 802.15.4標準概述 4 2.1 IEEE 802.15.4標準簡介 4 2.1.1 IEEE 802.15.4標準之網路拓樸 5 2.1.2 IEEE 802.15.4標準之實體層 6 2.1.3 IEEE 802.15.4標準之媒介存取控制副層 8 2.1.4 資料傳輸模型 11 2.1.5 訊框格式 15 2.1.6 保證時槽配置 21 第三章 動態保證時槽配置介紹 24 3.1 系統基本架構 24 3.2 裝置篩選機制說明 29 3.3 裝置流程說明 30 3.4 協調者流程說明 32 第四章 系統模擬與結果 35 4.1 模擬環境與參數 35 4.2 效能評估項目 37 4.2.1免競爭週期頻寬使用率(average bandwidth utilization of CFP) 37 4.2.2免競爭週期頻寬破碎比(fragmentation ratio of CFP) 37 4.2.3有效產能(goodput) 38 4.2.4免競爭週期佔用比率(ratio of CFP) 38 4.2.5免競爭週期封包丟棄率(drop ratio of CFP) 38 4.2.6能量消耗(power consumption) 39 4.3 結果分析與比較 39 4.3.1免競爭週期頻寬使用率分析與比較 40 4.3.2免競爭週期頻寬破碎比分析與比較 41 4.3.3有效產能分析與比較 43 4.3.4免競爭週期佔用比率分析與比較 44 4.3.5免競爭週期封包丟棄率分析與比較 46 4.3.6能量消耗分析與比較 47 第五章 結論及未來研究 49 參考文獻 50

    [1] Y. C. Tay, K. Jamieson, and H. Balakrishnan, “Collision-Minimizing CSMA and Its Applications to Wireless Sensor Networks,” IEEE Journal on Communications, Vol. 22, issue 6, pp. 1048-1057, 2004.
    [2] D. Puccinelli and M. Haenggi, ”Wireless Sensor Networks : Applications and Challenges of Ubiquitous Sensing,” IEEE Circuit and Systems Magazine, Vol. 5, No. 3, pp. 19-31, 2005.
    [3] K. Sha, W. Shi, and O. Watkins, “Using Wireless Sensor Networks for Fire Rescue Applications : Requirements and Challenges,” in Proceeding of Electro/information Technology, pp. 239-244, May 2006.
    [4] M. Ulema, “Wireless Sensor Networks : Architectures, Protocols, and Management,” in Proceeding of Network Operations and Management Symposium’04, Vol. 1, pp. 931, Apr. 2004.
    [5] M. A. M. Vieira and D. C. S. Junior, “Survey on Wireless Sensor Network Devices”, in Proceeding of Emerging Technologies and Factory Automation’03, Vol. 1, pp. 537-544, Sept. 2003.
    [6] J. L. Wong and M. Potkonjak, “Search in Sensor Networks : Challenges, Techniques, and Applications,” in Proceeding of Acoustics, Speech, and Signal Processing, Vol. 4, pp. 3752-3755, 2002.
    [7] H. Jingtao, “The Application of Wireless Sensor Networks to In-Service Motor Monitoring and Energy Management,” in Proceeding of Intelligent Networks and Intelligent Systems, 2008. ICINIS’08, pp. 165-169, Nov. 2008.
    [8] H. Bai, M. Atiquzzaman, and D. Lilja, “Wireless Sensor Network for Aircraft Health Monitoring,” in Proceeding of Broadband Networks’04, pp. 748-750, Oct. 2004.
    [9] D. Steere, A. Baptista, D. McNamee, C. Pu, and J. Walpole, “Research Challenges in Environmental Observation and Forecasting Systems,” in Proceeding of ACM/IEEE MOBICOM Conference, Boston, pp. 292-299, Aug. 2000.
    [10] J. A. Guierrez, “On The Use of IEEE 802.15.4 to Enable Wireless Sensor Networks in Building Automation,” in Proceeding of IEEE PIMRC’04, Vol. 3, pp. 1869-1869, Sept. 2004.
    [11] C. L. Yau and W. Y. Chung, “IEEE 802.15.4 Wireless Mobile Application for Healthcare System,” in Proceeding of Convergence Information Technology’07, pp. 1433-1438, Nov. 2007.
    [12] L. Q. Zhuang, K. M. Goh, and J. B. Zhang, “The Wireless Sensor Networks for Factory Automation : Issue and Challenges,” in Proceeding of Emerging Technologies and Factory Automation’07, pp. 141-148, Sept. 2007.
    [13] J. J. Evans, “Wireless Sensor Networks in Electrical Manufacturing,” in Proceeding of Electrical Insulation Conference and Electrical Manufacturing Expo, pp. 460-465, Oct. 2005.
    [14] IEEE 802 Working Group, “Standard for Part 15.4 : Wireless Medium Access Control(MAC) and Physical(PHY) Specifications for Low-Rate Wireless Personal Area Networks(LR-WPANs),” ANSI/IEEE 802.15.4, Oct. 2003.
    [15] IEEE 802 Working Group, “Standard for Part 15.4 : Wireless Medium Access Control(MAC) and Physical(PHY) Specifications for Low-Rate Wireless Personal Area Networks(LR-WPANs),” ANSI/IEEE 802.15.4, Sept. 2006.
    [16] G. Lu, B. Krishnamachari, and C. S. Raghavendra, “Performance Evaluation of The IEEE 802.15.4 MAC for Low-Rate Low-Power Wireless Networks,” in Proceeding of IEEE IPCCC, pp. 701-706, Apr. 2004.
    [17] T. R. Park and M. J. Lee, “Power Saving Algorithms for Wireless Sensor Networks on IEEE 802.15.4,” IEEE Communications Magazine, Vol. 46, pp. 148-155, June 2008.
    [18] J. A. Gutierrez, M. Naeve, E. Callaway, M. Bourgeois, V. Mitter, and B. Heile, “IEEE 802.15.4 : A Developing Standard for Low-Power Low-Cost Wireless Personal Area Networks,” IEEE Network Magazine, Vol. 15, No. 4, pp. 12-19, Sept. 2001.
    [19] L. Cheng, and A. G. Bourgeois, “Energy Efficiency of Different Data Transmission Methods in IEEE 802.15.4 : Study and Improvement,” in Proceeding of Wireless Pervasive Computing, 2007. ISWPC’07, pp. 395-400, Feb. 2007.
    [20] Y. K. Huang, A. C. Pang, and T. W. Kuo, “Adaptive GTS Allocation with Low Latency and Fairness Considerations for IEEE 802.15.4,” IEEE Communications Magazine, Vol. 9, pp. 3929-3934, June 2006.
    [21] Y. K. Huang, A. C. Pang, and H. M. Hung, “An Adaptive GTS Allocation Scheme for IEEE 802.15.4,” IEEE Transactions on Parallel and Distributed System, Vol. 19, issue 5, pp. 641-651, May 2008.
    [22] L. Cheng, A. G. Bourgeois, and X. Zhang, “A Performance Comparison Study of GTS Allocation Schemes in IEEE 802.15.4,” in Pr6oceeding of Future Generation Communication and Networking (FGCN 2007), Vol. 2, pp. 356-361, Dec. 2007.
    [23] L. Cheng, A. G. Bourgeois, and X. Zhang, “A New GTS Allocation Scheme for IEEE 802.15.4 Networks with Improved Bandwidth Utilization,” in Proceeding of Communication and Information Technologies, 2007. ISCIT’07, pp. 1143-1148, Oct. 2007.
    [24] Y. G. Hong, H. J. Kim, H. D. Park, and D. H. Kim, “Adaptive GTS Allocation Scheme to Support QoS and Multiple Devices in 802.15.4,” in Advanced Communication Technology International Conference, Vol. 3, pp. 1697-1702 , Feb. 2009

    QR CODE